|
Algebra and Discrete Mathematics, 2005, Issue 1, Pages 8–29
(Mi adm286)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
RESEARCH ARTICLE
Gorenstein matrices
M. A. Dokuchaeva, V. V. Kirichenkob, A. V. Zelenskyb, V. N. Zhuravlevb a Departamento de Matematica Univ. de SãoPaulo, Caixa Postal 66281, São Paulo, SP,
05315–970 — Brazil
b Faculty of Mechanics and Mathematics,
Kiev National, Taras Shevchenko Univ.,
Vladimirskaya Str., 64, 01033 Kiev, Ukraine
Abstract:
Let $A=(a_{ij})$ be an integral matrix. We say that $A$ is $(0, 1, 2)$-matrix if $a_{ij}\in\{0,1,2\}$. There exists the Gorenstein $(0, 1, 2)$-matrix for any permutation $\sigma$ on the set $\{1,\dots,n\}$ without fixed elements. For every positive integer $n$ there exists the Gorenstein cyclic $(0, 1, 2)$-matrix $A_{n}$ such
that $inx\,A_{n}=2$.
If a Latin square ${\mathcal L}_{n}$ with a first row and first column $(0,1,\ldots,n-1)$ is an exponent matrix, then $n=2^{m}$ and ${\mathcal L}_{n}$ is the Cayley table of a direct
product of $m$ copies of the cyclic group of order 2. Conversely, the Cayley table ${{\mathcal E}}_{m}$ of the elementary abelian group $G_{m}=(2)\times\ldots\times(2)$ of order $2^{m}$ is a Latin square and a Gorenstein symmetric matrix with first row $(0,1,\ldots,2^{m}-1)$ and
$$
\sigma({{\mathcal E}}_{m})=\begin{pmatrix}1&2&3&\ldots &2^{m}-1&2^{m}\\
2^{m}&2^{m}-1&2^{m}-2&\ldots & 2&1\end{pmatrix}.
$$
Keywords:
exponent matrix; Gorenstein tiled order, Gorenstein matrix, admissible quiver, doubly stochastic matrix.
Received: 17.02.2005 Revised: 29.03.2005
Citation:
M. A. Dokuchaev, V. V. Kirichenko, A. V. Zelensky, V. N. Zhuravlev, “Gorenstein matrices”, Algebra Discrete Math., 2005, no. 1, 8–29
Linking options:
https://www.mathnet.ru/eng/adm286 https://www.mathnet.ru/eng/adm/y2005/i1/p8
|
Statistics & downloads: |
Abstract page: | 169 | Full-text PDF : | 71 | First page: | 1 |
|