Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2005, Issue 1, Pages 8–29 (Mi adm286)  

This article is cited in 4 scientific papers (total in 4 papers)

RESEARCH ARTICLE

Gorenstein matrices

M. A. Dokuchaeva, V. V. Kirichenkob, A. V. Zelenskyb, V. N. Zhuravlevb

a Departamento de Matematica Univ. de SãoPaulo, Caixa Postal 66281, São Paulo, SP, 05315–970 — Brazil
b Faculty of Mechanics and Mathematics, Kiev National, Taras Shevchenko Univ., Vladimirskaya Str., 64, 01033 Kiev, Ukraine
Full-text PDF (321 kB) Citations (4)
Abstract: Let $A=(a_{ij})$ be an integral matrix. We say that $A$ is $(0, 1, 2)$-matrix if $a_{ij}\in\{0,1,2\}$. There exists the Gorenstein $(0, 1, 2)$-matrix for any permutation $\sigma$ on the set $\{1,\dots,n\}$ without fixed elements. For every positive integer $n$ there exists the Gorenstein cyclic $(0, 1, 2)$-matrix $A_{n}$ such that $inx\,A_{n}=2$.
If a Latin square ${\mathcal L}_{n}$ with a first row and first column $(0,1,\ldots,n-1)$ is an exponent matrix, then $n=2^{m}$ and ${\mathcal L}_{n}$ is the Cayley table of a direct product of $m$ copies of the cyclic group of order 2. Conversely, the Cayley table ${{\mathcal E}}_{m}$ of the elementary abelian group $G_{m}=(2)\times\ldots\times(2)$ of order $2^{m}$ is a Latin square and a Gorenstein symmetric matrix with first row $(0,1,\ldots,2^{m}-1)$ and
$$ \sigma({{\mathcal E}}_{m})=\begin{pmatrix}1&2&3&\ldots &2^{m}-1&2^{m}\\ 2^{m}&2^{m}-1&2^{m}-2&\ldots & 2&1\end{pmatrix}. $$
Keywords: exponent matrix; Gorenstein tiled order, Gorenstein matrix, admissible quiver, doubly stochastic matrix.
Received: 17.02.2005
Revised: 29.03.2005
Bibliographic databases:
Document Type: Article
MSC: 16P40, 16G10
Language: English
Citation: M. A. Dokuchaev, V. V. Kirichenko, A. V. Zelensky, V. N. Zhuravlev, “Gorenstein matrices”, Algebra Discrete Math., 2005, no. 1, 8–29
Citation in format AMSBIB
\Bibitem{DokKirZel05}
\by M.~A.~Dokuchaev, V.~V.~Kirichenko, A.~V.~Zelensky, V.~N.~Zhuravlev
\paper Gorenstein matrices
\jour Algebra Discrete Math.
\yr 2005
\issue 1
\pages 8--29
\mathnet{http://mi.mathnet.ru/adm286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2148817}
\zmath{https://zbmath.org/?q=an:1091.16011}
Linking options:
  • https://www.mathnet.ru/eng/adm286
  • https://www.mathnet.ru/eng/adm/y2005/i1/p8
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024