|
Algebra and Discrete Mathematics, 2006, Issue 4, Pages 1–11
(Mi adm276)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
RESEARCH ARTICLE
On minimal $\omega$-composition non-$\frak H$-formations
Liudmila I. Belous, Vadim M. Sel'kin Gomel State University of F. Skorina, Belarus, 246019, Gomel, Sovetskaya Str., 104
Abstract:
Let $\frak{H}$ be some class of groups. A formation $\frak{F}$ is called a minimal $\tau$-closed $\omega$-composition non-$\frak{H}$-formation [1] if $\frak{F}\nsubseteq\frak{H}$ but $\frak{F}_1\subseteq\frak{H}$ for all proper $\tau$-closed $\omega$-composition subformations $\frak{F}_1$ of $\frak{F}$. In this paper we describe the minimal $\tau$-closed $\omega$-composition non-$\frak{H}$-formations, where $\frak H$ is a 2-multiply local formation and $\tau$ is a subgroup functor such that for any group $G$ all subgroups from $\tau(G)$ are subnormal in $G$.
Keywords:
formation, $\tau$-closed $\omega$-composition, satellite.
Received: 06.05.2006 Revised: 10.04.2007
Citation:
Liudmila I. Belous, Vadim M. Sel'kin, “On minimal $\omega$-composition non-$\frak H$-formations”, Algebra Discrete Math., 2006, no. 4, 1–11
Linking options:
https://www.mathnet.ru/eng/adm276 https://www.mathnet.ru/eng/adm/y2006/i4/p1
|
|