Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2007, Issue 4, Pages 59–72 (Mi adm234)  

RESEARCH ARTICLE

Serial piecewise domains

Nadiya Gubarenia, Marina Khibinab

a Institute of Econometrics & Computer Science, Technical University of Częestochowa, 42–200 Częestochowa, Poland
b Institute of Engineering Thermophysics, NAS, Kiev, Ukraine
Abstract: A ring $A$ is called a piecewise domain with respect to the complete set of idempotents $\{e_1, e_2,\ldots, e_m\}$ if every nonzero homomorphism $e_iA \rightarrow e_jA$ is a monomorphism. In this paper we study the rings for which conditions of being piecewise domain and being hereditary (or semihereditary) rings are equivalent. We prove that a serial right Noetherian ring is a piecewise domain if and only if it is right hereditary. And we prove that a serial ring with right Noetherian diagonal is a piecewise domain if and only if it is semihereditary.
Keywords: piecewise domain, hereditary ring, semihereditary ring, serial ring, Noetherian diagonal, prime radical, prime quiver.
Bibliographic databases:
Document Type: Article
MSC: 16P40, 16G10
Language: English
Citation: Nadiya Gubareni, Marina Khibina, “Serial piecewise domains”, Algebra Discrete Math., 2007, no. 4, 59–72
Citation in format AMSBIB
\Bibitem{GubKhi07}
\by Nadiya~Gubareni, Marina~Khibina
\paper Serial piecewise domains
\jour Algebra Discrete Math.
\yr 2007
\issue 4
\pages 59--72
\mathnet{http://mi.mathnet.ru/adm234}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423710}
\zmath{https://zbmath.org/?q=an:1164.16318}
Linking options:
  • https://www.mathnet.ru/eng/adm234
  • https://www.mathnet.ru/eng/adm/y2007/i4/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024