Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2007, Issue 3, Pages 67–86 (Mi adm222)  

RESEARCH ARTICLE

F–semigroups

Emilia Giraldesa, Paula Marques-Smithb, Heinz Mitschc

a UTAD, Dpto. de Matematica, Quinta de Prados, 5000 Vila Real, Portugal
b Universidade do Minho, Centro de Matematica, Campus de Gualtar,4700 Braga, Portugal
c Universität Wien,Fakultät für Mathematik, Nordbergstrasse 15,1090 Wien, Austria
Abstract: A semigroup S is called F- semigroup if there exists a group-congruence ρ on S such that every ρ-class contains a greatest element with respect to the natural partial order S of S (see [8]). This generalizes the concept of F-inverse semigroups introduced by V. Wagner [12] and investigated in [7]. Five different characterizations of general F-semigroups S are given: by means of residuals, by special principal anticones, by properties of the set of idempotents, by the maximal elements in (S,S) and finally, an axiomatic one using an additional unary operation. Also F-semigroups in special classes are considered; in particular, inflations of semigroups and strong semilattices of monoids are studied.
Keywords: natural partial order, maximal elements, group congruence, residual, anticone.
Received: 20.10.2004
Revised: 28.01.2008
Bibliographic databases:
Document Type: Article
MSC: 20M10
Language: English
Citation: Emilia Giraldes, Paula Marques-Smith, Heinz Mitsch, “F–semigroups”, Algebra Discrete Math., 2007, no. 3, 67–86
Citation in format AMSBIB
\Bibitem{GirMarMit07}
\by Emilia Giraldes, Paula~Marques-Smith, Heinz~Mitsch
\paper $F$--semigroups
\jour Algebra Discrete Math.
\yr 2007
\issue 3
\pages 67--86
\mathnet{http://mi.mathnet.ru/adm222}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2423699}
\zmath{https://zbmath.org/?q=an:1164.20017}
Linking options:
  • https://www.mathnet.ru/eng/adm222
  • https://www.mathnet.ru/eng/adm/y2007/i3/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :64
    References:5
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025