Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2011, Volume 11, Issue 1, Pages 17–22 (Mi adm2)  

RESEARCH ARTICLE

Some fixed point theorems for pseudo ordered sets

S. Parameshwara Bhatta, Shiju George

Department of Mathematics, Mangalore University, Mangalagangothri, 574 199, Karnataka State, INDIA
References:
Abstract: In this paper, it is shown that for an isotone map $f$ on a pseudo ordered set $A$, the set of all fixed points of $f$ inherits the properties of $A$, namely, completeness, chain-completeness and weakly chain-completeness, as in the case of posets.
Keywords: pseudo ordered set, trellis, completeness, isotone map.
Received: 09.09.2009
Revised: 04.05.2011
Bibliographic databases:
Document Type: Article
MSC: 06B05
Language: English
Citation: S. Parameshwara Bhatta, Shiju George, “Some fixed point theorems for pseudo ordered sets”, Algebra Discrete Math., 11:1 (2011), 17–22
Citation in format AMSBIB
\Bibitem{ParGeo11}
\by S.~Parameshwara Bhatta, Shiju~George
\paper Some fixed point theorems for pseudo ordered sets
\jour Algebra Discrete Math.
\yr 2011
\vol 11
\issue 1
\pages 17--22
\mathnet{http://mi.mathnet.ru/adm2}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2867077}
\zmath{https://zbmath.org/?q=an:06120594}
Linking options:
  • https://www.mathnet.ru/eng/adm2
  • https://www.mathnet.ru/eng/adm/v11/i1/p17
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025