Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2010, Volume 9, Issue 1, Pages 16–30 (Mi adm18)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

On commutative nilalgebras of low dimension

Juan C. Gutierrez Fernandez

Departamento de Matemática-IME, Universidade de São Paulo Caixa Postal 66281, CEP 05315-970, São Paulo, SP, Brazil
Full-text PDF (262 kB) Citations (2)
Abstract: We prove that every commutative non-associative nilalgebra of dimension $\leq 7$, over a field of characteristic zero or sufficiently large is solvable.
Keywords: solvable, commutative, nilalgebra.
Received: 19.09.2008
Revised: 19.09.2008
Bibliographic databases:
Document Type: Article
MSC: 17A05,17A30
Language: English
Citation: Juan C. Gutierrez Fernandez, “On commutative nilalgebras of low dimension”, Algebra Discrete Math., 9:1 (2010), 16–30
Citation in format AMSBIB
\Bibitem{Fer10}
\by Juan C. Gutierrez Fernandez
\paper On commutative nilalgebras of low dimension
\jour Algebra Discrete Math.
\yr 2010
\vol 9
\issue 1
\pages 16--30
\mathnet{http://mi.mathnet.ru/adm18}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2676709}
\zmath{https://zbmath.org/?q=an:1233.17002}
Linking options:
  • https://www.mathnet.ru/eng/adm18
  • https://www.mathnet.ru/eng/adm/v9/i1/p16
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024