Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2008, Issue 2, Pages 123–129 (Mi adm164)  

This article is cited in 2 scientific papers (total in 2 papers)

RESEARCH ARTICLE

Random walks on finite groups converging after finite number of steps

A. L. Vyshnevetskiya, E. M. Zhmud'

a Karazina st. 7/9, apt. 34, 61078, Kharkov, Ukraine
Full-text PDF (197 kB) Citations (2)
Abstract: Let $P$ be a probability on a finite group $G$, $P^{(n)}=P\ast\ldots\ast P$ ($n$ times) be an $n$-fold convolution of $P$. If $n\rightarrow\infty$, then under mild conditions $P^{(n)}$ converges to the uniform probability $U(g)=\frac 1{|G|}$ $(g\in G)$. We study the case when the sequence $P^{(n)}$ reaches its limit $U$ after finite number of steps: $P^{(k)}=P^{(k+1)}=\dots=U$ for some $k$. Let $\Omega(G)$ be a set of the probabilities satisfying to that condition. Obviously, $U\in\Omega(G)$. We prove that $\Omega(G)\neq U$ for “almost all” non-Abelian groups and describe the groups for which $\Omega(G)=U$. If $P\in \Omega(G)$, then $P^{(b)}=U$, where $b$ is the maximal degree of irreducible complex representations of the group $G$.
Keywords: random walks on groups, finite groups, group algebra.
Bibliographic databases:
Document Type: Article
MSC: 20P05, 60B15
Language: English
Citation: A. L. Vyshnevetskiy, E. M. Zhmud', “Random walks on finite groups converging after finite number of steps”, Algebra Discrete Math., 2008, no. 2, 123–129
Citation in format AMSBIB
\Bibitem{VysZhm08}
\by A.~L.~Vyshnevetskiy, E.~M.~Zhmud'
\paper Random walks on finite groups converging after finite number of steps
\jour Algebra Discrete Math.
\yr 2008
\issue 2
\pages 123--129
\mathnet{http://mi.mathnet.ru/adm164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2484597}
\zmath{https://zbmath.org/?q=an:1164.20377}
Linking options:
  • https://www.mathnet.ru/eng/adm164
  • https://www.mathnet.ru/eng/adm/y2008/i2/p123
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024