Algebra and Discrete Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra Discrete Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra and Discrete Mathematics, 2008, Issue 2, Pages 65–82 (Mi adm159)  

RESEARCH ARTICLE

Characterization of Chebyshev Numbers

David Pokrass Jacobsa, Mohamed O. Rayesb, Vilmar Trevisanc

a School of Computing, Clemson University, Clemson, SC 29634–0974, USA
b Dept. of Comp. Sci. and Eng., Southern Methodist University, Dallas, TX 75275–0122 USA
c Instituto de Matemática, UFRGS, 91509–900 Porto Alegre, Brazil
Abstract: Let $T_n(x)$ be the degree-$n$ Chebyshev polynomial of the first kind. It is known [1,13] that $T_p(x) \equiv x^p\bmod{p}$, when $p$ is an odd prime, and therefore, $T_p(a)\equiv a\bmod{p}$ for all $a$. Our main result is the characterization of composite numbers $n$ satisfying the condition $T_n(a) \equiv a\bmod{n}$, for any integer $a$. We call these pseudoprimes Chebyshev numbers, and show that $n$ is a Chebyshev number if and only if $n$ is odd, squarefree, and for each of its prime divisors $p$, $n\equiv\pm 1\bmod p-1$ and $n\equiv\pm 1\bmod p+1$. Like Carmichael numbers, they must be the product of at least three primes. Our computations show there is one Chebyshev number less than $10^{10}$, although it is reasonable to expect there are infinitely many. Our proofs are based on factorization and resultant properties of Chebyshev polynomials.
Keywords: Chebyshev polynomials, polynomial factorization, resultant, pseudoprimes, Carmichael numbers.
Received: 09.06.2008
Revised: 09.06.2008
Bibliographic databases:
Document Type: Article
MSC: 11A07, 11Y35
Language: English
Citation: David Pokrass Jacobs, Mohamed O. Rayes, Vilmar Trevisan, “Characterization of Chebyshev Numbers”, Algebra Discrete Math., 2008, no. 2, 65–82
Citation in format AMSBIB
\Bibitem{JacRayTre08}
\by David~Pokrass~Jacobs, Mohamed~O.~Rayes, Vilmar~Trevisan
\paper Characterization of Chebyshev Numbers
\jour Algebra Discrete Math.
\yr 2008
\issue 2
\pages 65--82
\mathnet{http://mi.mathnet.ru/adm159}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2484592}
\zmath{https://zbmath.org/?q=an:1164.11005}
Linking options:
  • https://www.mathnet.ru/eng/adm159
  • https://www.mathnet.ru/eng/adm/y2008/i2/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Algebra and Discrete Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024