|
Algebra and Discrete Mathematics, 2011, Volume 12, Issue 2, Pages 53–63
(Mi adm128)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
RESEARCH ARTICLE
Quasi-duo partial skew polynomial rings
Wagner Cortesa, Miguel Ferreroa, Luciane Gobbib a Instituto de Matematica Universidade Federal do Rio Grande do Sul 91509-900, Porto Alegre, RS, Brazil
b Centro de Ciencias Exatas e Naturais Universidade Federal de Santa Maria 97105-900, Santa Maria, RS, Brazil
Abstract:
In this paper we consider rings $R$ with a partial action $\alpha$ of $\mathbb Z$ on $R$. We give necessary and sufficient conditions for partial skew polynomial rings and partial skew Laurent polynomial rings to be quasi-duo rings and in this case we describe the Jacobson radical. Moreover, we give some examples to show that our results are not an easy generalization of the global case.
Keywords:
partial action; quasi-duo; Jacobson radical; partial skew polynomial rings.
Received: 13.10.2011 Revised: 13.10.2011
Citation:
Wagner Cortes, Miguel Ferrero, Luciane Gobbi, “Quasi-duo partial skew polynomial rings”, Algebra Discrete Math., 12:2 (2011), 53–63
Linking options:
https://www.mathnet.ru/eng/adm128 https://www.mathnet.ru/eng/adm/v12/i2/p53
|
Statistics & downloads: |
Abstract page: | 603 | Full-text PDF : | 79 | References: | 72 | First page: | 1 |
|