|
Algebra and Discrete Mathematics, 2009, Issue 3, Pages 20–27
(Mi adm126)
|
|
|
|
RESEARCH ARTICLE
A variant of the primitive element theorem for separable extensions of a commutative ring
Dirceu Bagioa, Antonio Paquesb a Departamento de Matemática, Universidade Federal de Santa Maria, 97105–900, Santa Maria, RS, Brazil
b Instituto de Matemática, Universidade Federal do Rio Grande do Sul 91509–900, Porto Alegre, RS, Brazil
Abstract:
In this article we show that any strongly separable extension of a commutative ring $R$ can be embedded into another one having primitive element whenever every boolean localization of $R$ modulo its Jacobson radical is von Neumann regular and locally uniform.
Keywords:
primitive element, separable extension, boolean localization.
Received: 12.08.2009 Revised: 25.09.2009
Citation:
Dirceu Bagio, Antonio Paques, “A variant of the primitive element theorem for separable extensions of a commutative ring”, Algebra Discrete Math., 2009, no. 3, 20–27
Linking options:
https://www.mathnet.ru/eng/adm126 https://www.mathnet.ru/eng/adm/y2009/i3/p20
|
Statistics & downloads: |
Abstract page: | 161 | Full-text PDF : | 96 | First page: | 1 |
|