Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1998, Volume 10, Issue 1, Pages 132–186 (Mi aa975)  

This article is cited in 42 scientific papers (total in 42 papers)

Research Papers

The similarity degree of an operator algebra

G. Pisierab

a Université Paris VI, Paris, France
b Texas A\&M University, College Station, TX
Abstract: Let $A$ be a unital operator algebra having the property that every bounded unital homomorphism $u\colon A\to B(H)$ is similar to a contractive one. Let $\operatorname{Sim}(u)=\inf\{\|S\|\,\|S^{-1}\|\}$, where the infimum runs over all invertible operators $S\colon H\to H$ such that the “conjugate” homomorphism $a\mapsto S^{-1}u(a)S$ is contractive. Now for all $c>1$, let $\Phi(c)=\sup\operatorname{Sim}(u)$, where the supremum runs over all unital homomorphism $u\colon A\to B(H)$ with $\|u\|\le c$. Then there is $\alpha\ge 0$ such that for some constant $K$ we have:
$$ \Phi(c)\le Kc^{\alpha},\qquad c>1. $$
Moreover, the infimum of such $\alpha$'s is an integer (denoted by $d(A)$ and called the similarity degree of $A$), and (*) is still true for some $K$ when $\alpha=d(A)$. Among the applications of these results, new characterizations are given of proper uniform algebras on one hand, and of nuclear $C^*$-algebras on the other. Moreover, a characterization of amenable groups is obtained, which answers (at least partially) a question on group representations going back to a 1950 paper of Dixmier.
Keywords: Similarity problem, similarity degree, completely bounded map, operator space, operator algebra, group representation, uniform algebra.
Received: 05.04.1997
Bibliographic databases:
Document Type: Article
Language: English
Citation: G. Pisier, “The similarity degree of an operator algebra”, Algebra i Analiz, 10:1 (1998), 132–186; St. Petersburg Math. J., 10:1 (1999), 103–146
Citation in format AMSBIB
\Bibitem{Pis98}
\by G.~Pisier
\paper The similarity degree of an operator algebra
\jour Algebra i Analiz
\yr 1998
\vol 10
\issue 1
\pages 132--186
\mathnet{http://mi.mathnet.ru/aa975}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1618400}
\zmath{https://zbmath.org/?q=an:0911.47038}
\transl
\jour St. Petersburg Math. J.
\yr 1999
\vol 10
\issue 1
\pages 103--146
Linking options:
  • https://www.mathnet.ru/eng/aa975
  • https://www.mathnet.ru/eng/aa/v10/i1/p132
  • This publication is cited in the following 42 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024