Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2001, Volume 13, Issue 3, Pages 171–178 (Mi aa942)  

Research Papers

Continuous measures with large partial sums

A. Olofsson

Division of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands
Abstract: It is proved that, in a weak sense, every measure in $M(\mathbb T)$ supported by a sufficiently singular Cantor set has asymptotically large Fourier partial sums. It is also shown that every measure in $M(\mathbb T)$ whose Fourier partial sums satisfy a mild growth condition has nontrivial null sets.
Keywords: Dirichlet kernel, Lebesgue constants, Cantor sets.
Received: 26.02.2000
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. Olofsson, “Continuous measures with large partial sums”, Algebra i Analiz, 13:3 (2001), 171–178; St. Petersburg Math. J., 13:3 (2002), 465–470
Citation in format AMSBIB
\Bibitem{Olo01}
\by A.~Olofsson
\paper Continuous measures with large partial sums
\jour Algebra i Analiz
\yr 2001
\vol 13
\issue 3
\pages 171--178
\mathnet{http://mi.mathnet.ru/aa942}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1848184}
\zmath{https://zbmath.org/?q=an:0989.43003}
\transl
\jour St. Petersburg Math. J.
\yr 2002
\vol 13
\issue 3
\pages 465--470
Linking options:
  • https://www.mathnet.ru/eng/aa942
  • https://www.mathnet.ru/eng/aa/v13/i3/p171
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024