Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2001, Volume 13, Issue 2, Pages 93–115 (Mi aa927)  

This article is cited in 22 scientific papers (total in 22 papers)

Research Papers

Interpolation of subspaces and applications to exponential bases

S. Ivanova, N. Kaltonb

a Russian Center of Laser Physics, St. Petersburg State University, St. Petersburg, Russia
b Department of Mathematics, University of Missouri, Columbia, USA
Abstract: Precise conditions are given under which the real interpolation space $[Y_0,X_1]_{\theta,p}$ coincides with a closed subspace of $[X_0,X_1]_{\theta,p}$ when $Y_0$ is a closed subspace of codimension one. This result is applied to the study of nonharmonic Fourier series in the Sobolev spaces $H^s(-\pi,\pi)$ with $0<s<1$. The main result looks like this: if $\{e^{i\lambda_nt}\}$ is an unconditional basis in $L^2(-\pi,\pi)$, then there exist two numbers $s_0$, $s_1$ such that for $s<s_0\{e^{i\lambda_nt}\}$ forms an unconditional basis in $H^s(-\pi,\pi)$, and for $s_1<s\{e^{i\lambda_nt}\}$ forms an unconditional basis of a closed subspace in $H^s(-\pi,\pi)$ of codimension one. If $s_0\le s\le s_1$, then the family $\{e^{i\lambda_nt}\}$ is not an unconditional basis in its span in $H^s(-\pi,\pi)$.
Keywords: Riesz basis, Sobolev space, $K$-functional, Muckenhoupt condition, nonharmonic Fourier series.
Received: 10.09.2000
Bibliographic databases:
Document Type: Article
Language: English
Citation: S. Ivanov, N. Kalton, “Interpolation of subspaces and applications to exponential bases”, Algebra i Analiz, 13:2 (2001), 93–115; St. Petersburg Math. J., 13:2 (2002), 221–239
Citation in format AMSBIB
\Bibitem{IvaKal01}
\by S.~Ivanov, N.~Kalton
\paper Interpolation of subspaces and applications to exponential bases
\jour Algebra i Analiz
\yr 2001
\vol 13
\issue 2
\pages 93--115
\mathnet{http://mi.mathnet.ru/aa927}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1834861}
\zmath{https://zbmath.org/?q=an:1014.46046}
\transl
\jour St. Petersburg Math. J.
\yr 2002
\vol 13
\issue 2
\pages 221--239
Linking options:
  • https://www.mathnet.ru/eng/aa927
  • https://www.mathnet.ru/eng/aa/v13/i2/p93
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:482
    Full-text PDF :156
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024