Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2001, Volume 13, Issue 1, Pages 39–59 (Mi aa919)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Finite Toeplitz matrices and sharp Littlewood conjectures

I. Klemeš

Department of Mathematics and Statistics, McGill University Montréal, Québec, Canada
Full-text PDF (841 kB) Citations (5)
Abstract: The sharp Littlewood conjecture states that for fixed N1, if D(z)=1+z+z2++zN1, then on the unit circle |z|=1, is the minimum of \|f\|_1 for f of the form f(z)=c_0+c_1z^{n_1}+\dots+c_{N-1}z^{n_{N-1}} with |c_k|=1; more generally, \|D\|_p is the \min/\max of \|f\|_p for fixed p\in[0,2]/[2,\infty]. In the paper this is proved for the special case where f(z)=1\pm z\pm z\pm z^2\pm\dots\pm z^{N-1} and p\in[0,4], by first proving stronger results for the eigenvalues of finite sections of the Toeplitz matrices of |D|^2 and |f|^2, in particular, for their Schatten p-norms. Several conjectures are also stated to the effect that these stronger results should be true for the general case of f. The approach is motivated by the uncertainty principle and two theorems of Sze̋go.
Keywords: Sze̋go limit theorem, eigenvalues, totally unimodular matrix.
Received: 15.07.2000
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. Klemeš, “Finite Toeplitz matrices and sharp Littlewood conjectures”, Algebra i Analiz, 13:1 (2001), 39–59; St. Petersburg Math. J., 13:1 (2002), 27–40
Citation in format AMSBIB
\Bibitem{Kle01}
\by I.~Kleme{\v s}
\paper Finite Toeplitz matrices and sharp Littlewood conjectures
\jour Algebra i Analiz
\yr 2001
\vol 13
\issue 1
\pages 39--59
\mathnet{http://mi.mathnet.ru/aa919}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1819367}
\zmath{https://zbmath.org/?q=an:1005.15015}
\transl
\jour St. Petersburg Math. J.
\yr 2002
\vol 13
\issue 1
\pages 27--40
Linking options:
  • https://www.mathnet.ru/eng/aa919
  • https://www.mathnet.ru/eng/aa/v13/i1/p39
  • This publication is cited in the following 5 articles:
    1. Akbari S., Einollahzadeh M., Karkhaneei M.M., Nematollahi M.A., “Proof of a Conjecture on the Seidel Energy of Graphs”, Eur. J. Comb., 86 (2020), 103078  crossref  mathscinet  isi  scopus
    2. Klemes I., “More Symmetric Polynomials Related To P-Norms”, Houst. J. Math., 41:3 (2015), 815–830  mathscinet  zmath  isi
    3. Klemes I., “Symmetric Polynomials and $l(P)$ Inequalities for Certain Intervals of $p$”, Houston J Math, 37:1 (2011), 285–295  mathscinet  zmath  isi
    4. Klemes I., “Polarization of an Inequality”, Math. Inequal. Appl., 14:4 (2011), 819–824  mathscinet  zmath  isi
    5. Klemes, I, “Alexandrov's inequality and conjectures on some Toeplitz matrices”, Linear Algebra and Its Applications, 422:1 (2007), 164  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:451
    Full-text PDF :253
    References:2
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025