Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2002, Volume 14, Issue 4, Pages 36–53 (Mi aa868)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

On a generalization of the Bernstein–Markov inequality

T. Erdélyia, J. Szabadosb

a Texas A&M University
b Alfréd Rényi Institute of Mathematics, Hungary Academy of Sciences
Full-text PDF (648 kB) Citations (4)
Abstract: It is shown that
$$ \|P'Q\|_{L_p(I)}\leq c^{1+1/p}(N+M)\log(\min(N,M+1)+1)\|PQ\|_{L_p(I)} $$
for all real trigonometric polynomials $P$ and $Q$ of degree $N$ and $M$, respectively, where $0<p\leq\infty$, $I:=(-\pi,\pi]$, and $c>0$ is a suitable absolute constant. Also, it is shown that
$$ \|f'g\|_{L_p(J)}\leq c^{1+1/p}(N+M)^2\|fg\|_{L_p(J)} $$
for all algebraic polynomials $f$ and $g$ of degree $N$ and $M$, respectively, where $0<p\leq\infty$, $J:=[-1,1]$, and $c>0$ is a suitable absolute constant. Both of the above trigonometric and algebraic results are sharp up to the factor $c^{1+1/p}$. In fact, the results are proved for the much wider classes of generalized trigonometric and algebraic polynomials.
Received: 05.11.2001
Bibliographic databases:
Document Type: Article
Language: English
Citation: T. Erdélyi, J. Szabados, “On a generalization of the Bernstein–Markov inequality”, Algebra i Analiz, 14:4 (2002), 36–53
Citation in format AMSBIB
\Bibitem{ErdSza02}
\by T.~Erd{\'e}lyi, J.~Szabados
\paper On a~generalization of the Bernstein--Markov inequality
\jour Algebra i Analiz
\yr 2002
\vol 14
\issue 4
\pages 36--53
\mathnet{http://mi.mathnet.ru/aa868}
\zmath{https://zbmath.org/?q=an:1039.41008}
Linking options:
  • https://www.mathnet.ru/eng/aa868
  • https://www.mathnet.ru/eng/aa/v14/i4/p36
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025