|
This article is cited in 6 scientific papers (total in 6 papers)
Research Papers
Toeplitz operators on weighted Hardy spaces
J. Esterle Laboratoire de Mathématiques Pures, Université Bordeaux 1, Talence, France
Abstract:
Let $\sigma$ be a weight on $\mathbb Z^+$ such that the usual shift $S\colon(u_n)_{n\geq0}\mapsto(u_{n-1})_{n\geq0}$ (with the convention $u_{-1}=0$) and the backward shift
$T\colon(u_n)_{n\geq0}\mapsto(u_{n+1})_{n\geq0}$ are bounded on the weighted Hilbert space
$l_\sigma^2(\mathbb Z^+):=\{u=(u_n)_{n\geq0}\mid\sum_{n\geq0}|u_n|^2\sigma^2(n)<+\infty\}$.
Set $\sigma_*(n)=1/\sigma(-n)$ for $n\leq0$, and set $l^2_{\sigma_*}(\mathbb Z^-):=\{v=(v_n)_{n\leq0}\mid\sum_{n\leq0}|u_n|^2\sigma^2_*(n)<+\infty\}$. The existence of pairs
$(u,v)\in l_\sigma^2(\mathbb Z^+)\times l^2_{\sigma_*}(\mathbb Z^-)$ with $u\ne0$, $v\ne0$ and
$u\ast v=0$ is discussed. Such pairs will be called nontrivial solutions of the equation $u\ast v=0$.
A bounded operator $U$ on $l^2_\sigma(\mathbb Z^+)$ is called a Toeplitz operator if $TUS=U$. The map $(u,v)\mapsto u\ast v$ is a continuous bilinear map from
$l_\sigma^2(\mathbb Z^+)\times l^2_{\sigma_*}(\mathbb Z^-)$ into a Banach space that can be identified with the predual of the space $\mathcal T_\sigma$ of Toeplitz operators on $l^2_\sigma(\mathbb Z^+)$. These Toeplitz operators, their “Fourier transforms”, and their symbols are discussed in $\S\,2,3$. In $\S\,4$, by using the “Brown approximation method”, many examples of weights $\sigma$ on $\mathbb Z^+$ are given for which the equation $u\ast v=0$ has nontrivial solutions. In particular, it is shown that there exist nondecreasing weights on $\mathbb Z^+$ of arbitrarily slow growth such that $\rho(S)=\rho(T)=1$ and
the equation $u\ast v=0$ has many nontrivial solutions. This result is somewhat surprising because, surely, the equation $u\ast v$ has only trivial solutions on $l^2(\mathbb Z^+)\times l^2(\mathbb Z^-)$.
Keywords:
Toeplitz operator, symbol, Toeplitz matrix, weighted space of sequences, weighted Hardy space, convolution equations, Brown approximation method.
Received: 25.08.2001
Citation:
J. Esterle, “Toeplitz operators on weighted Hardy spaces”, Algebra i Analiz, 14:2 (2002), 92–116; St. Petersburg Math. J., 14:2 (2003), 251–272
Linking options:
https://www.mathnet.ru/eng/aa842 https://www.mathnet.ru/eng/aa/v14/i2/p92
|
Statistics & downloads: |
Abstract page: | 506 | Full-text PDF : | 581 | First page: | 1 |
|