Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2002, Volume 14, Issue 2, Pages 92–116 (Mi aa842)  

This article is cited in 6 scientific papers (total in 6 papers)

Research Papers

Toeplitz operators on weighted Hardy spaces

J. Esterle

Laboratoire de Mathématiques Pures, Université Bordeaux 1, Talence, France
Abstract: Let $\sigma$ be a weight on $\mathbb Z^+$ such that the usual shift $S\colon(u_n)_{n\geq0}\mapsto(u_{n-1})_{n\geq0}$ (with the convention $u_{-1}=0$) and the backward shift $T\colon(u_n)_{n\geq0}\mapsto(u_{n+1})_{n\geq0}$ are bounded on the weighted Hilbert space $l_\sigma^2(\mathbb Z^+):=\{u=(u_n)_{n\geq0}\mid\sum_{n\geq0}|u_n|^2\sigma^2(n)<+\infty\}$. Set $\sigma_*(n)=1/\sigma(-n)$ for $n\leq0$, and set $l^2_{\sigma_*}(\mathbb Z^-):=\{v=(v_n)_{n\leq0}\mid\sum_{n\leq0}|u_n|^2\sigma^2_*(n)<+\infty\}$. The existence of pairs $(u,v)\in l_\sigma^2(\mathbb Z^+)\times l^2_{\sigma_*}(\mathbb Z^-)$ with $u\ne0$, $v\ne0$ and $u\ast v=0$ is discussed. Such pairs will be called nontrivial solutions of the equation $u\ast v=0$.
A bounded operator $U$ on $l^2_\sigma(\mathbb Z^+)$ is called a Toeplitz operator if $TUS=U$. The map $(u,v)\mapsto u\ast v$ is a continuous bilinear map from $l_\sigma^2(\mathbb Z^+)\times l^2_{\sigma_*}(\mathbb Z^-)$ into a Banach space that can be identified with the predual of the space $\mathcal T_\sigma$ of Toeplitz operators on $l^2_\sigma(\mathbb Z^+)$. These Toeplitz operators, their “Fourier transforms”, and their symbols are discussed in $\S\,2,3$. In $\S\,4$, by using the “Brown approximation method”, many examples of weights $\sigma$ on $\mathbb Z^+$ are given for which the equation $u\ast v=0$ has nontrivial solutions. In particular, it is shown that there exist nondecreasing weights on $\mathbb Z^+$ of arbitrarily slow growth such that $\rho(S)=\rho(T)=1$ and the equation $u\ast v=0$ has many nontrivial solutions. This result is somewhat surprising because, surely, the equation $u\ast v$ has only trivial solutions on $l^2(\mathbb Z^+)\times l^2(\mathbb Z^-)$.
Keywords: Toeplitz operator, symbol, Toeplitz matrix, weighted space of sequences, weighted Hardy space, convolution equations, Brown approximation method.
Received: 25.08.2001
Bibliographic databases:
Document Type: Article
Language: English
Citation: J. Esterle, “Toeplitz operators on weighted Hardy spaces”, Algebra i Analiz, 14:2 (2002), 92–116; St. Petersburg Math. J., 14:2 (2003), 251–272
Citation in format AMSBIB
\Bibitem{Est02}
\by J.~Esterle
\paper Toeplitz operators on weighted Hardy spaces
\jour Algebra i Analiz
\yr 2002
\vol 14
\issue 2
\pages 92--116
\mathnet{http://mi.mathnet.ru/aa842}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1925882}
\zmath{https://zbmath.org/?q=an:1040.47018}
\transl
\jour St. Petersburg Math. J.
\yr 2003
\vol 14
\issue 2
\pages 251--272
Linking options:
  • https://www.mathnet.ru/eng/aa842
  • https://www.mathnet.ru/eng/aa/v14/i2/p92
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:506
    Full-text PDF :581
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024