Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2002, Volume 14, Issue 2, Pages 56–91 (Mi aa841)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

The complex shade of a real space and its applications

T. Ekholm

Department of Mathematics, Uppsala University, Uppsala, Sweden
Abstract: A natural oriented $(2k+2)$-chain in $\mathbb{C}P^{2k+1}$ with boundary twice $\mathbb{R}P^{2k+1}$, the complex shade of $\mathbb{R}P^{2k+1}$, is constructed. The intersection numbers with the shade make it possible to introduce a new invariant, the shade number, of a $k$-dimensional subvariety $W$ with a normal vector field $n$ along the real set. If $W$ is an even-dimensional real variety, then the shade number and the Euler number of the complement of $n$ in the real normal bundle of its real part agree. If $W$ is an odd-dimensional orientable real variety, a linear combination of the shade number and the wrapping number (self-linking number) of its real part does not depend on $n$ and equals the encomplexed writhe as defined by Viro [V]. The shade numbers of varieties without real points and the encomplexed writhes of odd-dimensional real varieties are, in a sense, Vassiliev invariants of degree 1.
The complex shades of odd-dimensional spheres are constructed. The shade numbers of real subvarieties in spheres have properties similar to those of their projective counterparts.
Keywords: algebraic variety, complexification, real algebraic knot, rigid isotopy, isotopy, linking number.
Received: 19.09.2001
Bibliographic databases:
Document Type: Article
Language: English
Citation: T. Ekholm, “The complex shade of a real space and its applications”, Algebra i Analiz, 14:2 (2002), 56–91; St. Petersburg Math. J., 14:2 (2003), 223–250
Citation in format AMSBIB
\Bibitem{Ekh02}
\by T.~Ekholm
\paper The complex shade of a~real space and its applications
\jour Algebra i Analiz
\yr 2002
\vol 14
\issue 2
\pages 56--91
\mathnet{http://mi.mathnet.ru/aa841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1925881}
\zmath{https://zbmath.org/?q=an:1051.57034}
\transl
\jour St. Petersburg Math. J.
\yr 2003
\vol 14
\issue 2
\pages 223--250
Linking options:
  • https://www.mathnet.ru/eng/aa841
  • https://www.mathnet.ru/eng/aa/v14/i2/p56
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:252
    Full-text PDF :97
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024