Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2002, Volume 14, Issue 1, Pages 26–45 (Mi aa832)  

This article is cited in 9 scientific papers (total in 9 papers)

Research Papers

Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions

M. Bildhauer, M. Fuchs

Universität des Saarlandes, Saarbrücken, Germany
Full-text PDF (714 kB) Citations (9)
Abstract: For a bounded Lipschitz domain $\Omega\subset\mathbb R^n$ and a function $u_0\in W{}_1^1(\Omega;\mathbb R^N)$, the following minimization problem is considered:
$$ (\mathcal P)\colon\int_\Omega f(\nabla u)\,dx\to\min\quad\text{in}\quad u_0+\overset\circ W{}_1^1(\Omega;\mathbb R^N), $$
where $f\colon\mathbb R^{nN}\to[0,\infty)$ is a strictly convex integrand. Let $\mathcal M$ denote the set of all $L^1$-cluster points of minimizing sequences of problem $(\mathcal P)$. It is shown that the geometric relaxation of problem $(\mathcal P)$ coincides with the relaxation based on the notion of the extended Lagrangian; moreover, it is proved that the elements $u$ of $\mathcal M$ are in one-to-one correspondence with the solutions of the relaxed problems.
Keywords: variational problems, linear growth, generalized minimizers, relaxation, functions of bounded variation.
Received: 27.08.2001
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Bildhauer, M. Fuchs, “Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions”, Algebra i Analiz, 14:1 (2002), 26–45; St. Petersburg Math. J., 14:1 (2003), 19–33
Citation in format AMSBIB
\Bibitem{BilFuc02}
\by M.~Bildhauer, M.~Fuchs
\paper Relaxation of convex variational problems with linear growth defined on classes of vector-valued functions
\jour Algebra i Analiz
\yr 2002
\vol 14
\issue 1
\pages 26--45
\mathnet{http://mi.mathnet.ru/aa832}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1893319}
\zmath{https://zbmath.org/?q=an:1029.49013}
\transl
\jour St. Petersburg Math. J.
\yr 2003
\vol 14
\issue 1
\pages 19--33
Linking options:
  • https://www.mathnet.ru/eng/aa832
  • https://www.mathnet.ru/eng/aa/v14/i1/p26
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:741
    Full-text PDF :127
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024