|
This article is cited in 3 scientific papers (total in 3 papers)
Research Papers
Estimation of a quadratic function and the $p$-Banach–Saks property
E. M. Semenova, F. A. Sukochevb a Voronezh State University
b Flinders University of SA, Bedford Park, SA, Australia
Abstract:
Let $E$ be a rearrangement-invariant Banach function space on $[0,1]$, and let $\Gamma(E)$ denote the set of all $p\ge 1$ such that any sequence $\{x_n\}$ in $E$ converging weakly to 0 has a subsequence $\{y_n\}$ with $\sup_m m^{-1/p}\|\sum_{1\le k\le m}y_n\|<\infty$. The set $\Gamma_i(E)$ is defined similarly, but only sequences $\{x_n\}$ of independent random variables are taken into account. It is proved (under the assumption $\Gamma(E)\ne\{1\}$) that if $\Gamma_i(E)\setminus\Gamma(E)\ne\varnothing$, then $\Gamma_i(E)\setminus\Gamma(E)=\{2\}$.
Received: 22.02.2006
Citation:
E. M. Semenov, F. A. Sukochev, “Estimation of a quadratic function and the $p$-Banach–Saks property”, Algebra i Analiz, 18:4 (2006), 185–197; St. Petersburg Math. J., 18:4 (2007), 647–656
Linking options:
https://www.mathnet.ru/eng/aa82 https://www.mathnet.ru/eng/aa/v18/i4/p185
|
|