Citation:
A. L. Vol'berg, F. L. Nazarov, “Heating of the Beurling operator and the estimates of its norm”, Algebra i Analiz, 15:4 (2003), 142–158; St. Petersburg Math. J., 15:4 (2004), 563–573
\Bibitem{VolNaz03}
\by A.~L.~Vol'berg, F.~L.~Nazarov
\paper Heating of the Beurling operator and the estimates of its norm
\jour Algebra i Analiz
\yr 2003
\vol 15
\issue 4
\pages 142--158
\mathnet{http://mi.mathnet.ru/aa812}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2068982}
\zmath{https://zbmath.org/?q=an:1061.47042}
\transl
\jour St. Petersburg Math. J.
\yr 2004
\vol 15
\issue 4
\pages 563--573
\crossref{https://doi.org/10.1090/S1061-0022-04-00822-2}
Linking options:
https://www.mathnet.ru/eng/aa812
https://www.mathnet.ru/eng/aa/v15/i4/p142
This publication is cited in the following 66 articles:
Gaven Martin, Cong Yao, “The LpLp Teichmüller Theory: Existence and Regularity of Critical Points”, Arch Rational Mech Anal, 248:2 (2024)
Adam Osȩkowski, “Mixed LpLp estimates for transforms of noncommutative martingales”, Bulletin of London Math Soc, 2024
Baudoin F., Chen L., “A Note on Second Order Riesz Transforms in 3-Dimensional Lie Groups”, Arch. Math., 118:3 (2022), 291–304
Banuelos R., Baudoin F., Chen L., Sire Ya., “Multiplier Theorems Via Martingale Transforms”, J. Funct. Anal., 281:9 (2021), 109188
Duse E., “Second Order Elliptic Equations and Hodge-Dirac Operators”, J. Funct. Anal., 281:12 (2021), 109267
Rodrigo Bañuelos, Tomasz Gałązka, Adam Osȩkowski, “A dual approach to Burkholder's Lp estimates”, Bulletin of London Math Soc, 53:4 (2021), 1107
Carbonaro A. Dragicevic O., “Convexity of Power Functions and Bilinear Embedding For Divergence-Form Operators With Complex Coefficients”, J. Eur. Math. Soc., 22:10 (2020), 3175–3221
Betancor J.J. Dalmasso E. Farina J.C. Scotto R., “Bellman Functions and Dimension Free l-P-Estimates For the Riesz Transforms in Bessel Settings”, Nonlinear Anal.-Theory Methods Appl., 197 (2020), 111850
Carbonaro A. Dragicevic O., “Bilinear Embedding For Divergence-Form Operators With Complex Coefficients on Irregular Domains”, Calc. Var. Partial Differ. Equ., 59:3 (2020), 104
Carbonaro A. Dragicevic O., “Bounded Holomorphic Functional Calculus For Nonsymmetric Ornstein-Uhlenbeck Operators”, Ann. Scuola Norm. Super. Pisa-Cl. Sci., 19:4 (2019), 1497–1533
Banuelos R., Osekowski A., “Stability in Burkholder'S Differentially Subordinate Martingales Inequalities and Applications to Fourier Multipliers”, J. Math. Pures Appl., 119 (2018), 1–44
Kovac V. Skreb K.A., “Bellman Functions and l-P Estimates For Paraproducts”, Prob. Math. Stat.., 38:2 (2018), 459–479
Carbonaro A., Dragicevic O., “Functional calculus for generators of symmetric contraction semigroups”, Duke Math. J., 166:5 (2017), 937–974
Strzelecki M., “The L^p-norms of the Beurling–Ahlfors transform on radial functions”, Ann. Acad. Sci. Fenn. Ser. A1-Math., 42:1 (2017), 73–93
Perlmutter M., “a Method of Rotations For Levy Multipliers”, Math. Z., 287:3-4 (2017), 797–816
Nolder C.A., Wang G., “Fourier Multipliers and Dirac Operators”, Adv. Appl. Clifford Algebr., 27:2 (2017), 1647–1657
Osekowski A., “Sharp Logarithmic Inequalities for Hardy Operators”, Z. Anal. ihre. Anwend., 35:1 (2016), 1–20
Arcozzi N., Domelevo K., Petermichl S., “Second Order Riesz Transforms on Multiply–Connected Lie Groups and Processes with Jumps”, Potential Anal., 45:4 (2016), 777–794
Kim D., “Martingale Transforms and the Hardy-Littlewood-Sobolev Inequality for Semigroups”, Potential Anal., 45:4 (2016), 795–807
Perlmutter M., “On a Class of Caldern-Zygmund Operators Arising From Projections of Martingale Transforms”, Potential Anal., 42:2 (2015), 383–401