Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2006, Volume 18, Issue 4, Pages 95–126 (Mi aa80)  

This article is cited in 16 scientific papers (total in 16 papers)

Research Papers

Imbedding theorems for Sobolev spaces on domains with peak and on Hölder domains

V. G. Maz'yaa, S. V. Poborchib

a Department of Mathematics, Linköping University, Linköping, Sweden
b St. Petersburg State University, Department of Mathematics and Mechanics
References:
Abstract: Necessary and sufficient conditions are obtained for the continuity and compactness of the imbedding operators Wlp(Ω)Lq(Ω)Wlp(Ω)Lq(Ω) and Wlp(Ω)C(Ω)L(Ω)Wlp(Ω)C(Ω)L(Ω) for a domain with an outward peak. More simple sufficient conditions are presented. Applications to the solvability of the Neumann problem for elliptic equations of order 2l2l, l1, for a domain with peak are given. An imbedding theorem for Sobolev spaces on Hölder domains is stated.
Received: 05.09.2005
English version:
St. Petersburg Mathematical Journal, 2007, Volume 18, Issue 4, Pages 583–605
DOI: https://doi.org/10.1090/S1061-0022-07-00962-4
Bibliographic databases:
Document Type: Article
MSC: 46E35
Language: Russian
Citation: V. G. Maz'ya, S. V. Poborchi, “Imbedding theorems for Sobolev spaces on domains with peak and on Hölder domains”, Algebra i Analiz, 18:4 (2006), 95–126; St. Petersburg Math. J., 18:4 (2007), 583–605
Citation in format AMSBIB
\Bibitem{MazPob06}
\by V.~G.~Maz'ya, S.~V.~Poborchi
\paper Imbedding theorems for Sobolev spaces on domains with peak and on H\"older domains
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 4
\pages 95--126
\mathnet{http://mi.mathnet.ru/aa80}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2262585}
\zmath{https://zbmath.org/?q=an:1138.46023}
\elib{https://elibrary.ru/item.asp?id=9243974}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 4
\pages 583--605
\crossref{https://doi.org/10.1090/S1061-0022-07-00962-4}
Linking options:
  • https://www.mathnet.ru/eng/aa80
  • https://www.mathnet.ru/eng/aa/v18/i4/p95
  • This publication is cited in the following 16 articles:
    1. O. V. Besov, “Embeddings of Spaces of Functions of Positive Smoothness on a Hölder Domain in Lebesgue Spaces”, Math. Notes, 113:1 (2023), 18–26  mathnet  crossref  crossref  mathscinet
    2. O. V. Besov, “Integral Representations and Embeddings of Spaces of Functions of Positive Smoothness on a Hölder Domain”, Proc. Steklov Inst. Math., 323 (2023), 47–58  mathnet  crossref  crossref
    3. O. V. Besov, “Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak”, Proc. Steklov Inst. Math., 319 (2022), 43–55  mathnet  crossref  crossref
    4. Chill R., Meinlschmidt H., Rehberg J., “On the Numerical Range of Second-Order Elliptic Operators With Mixed Boundary Conditions in l-P”, J. Evol. Equ., 21:3 (2021), 3267–3288  crossref  mathscinet  isi
    5. Kukushkin M.V., “Note on the Equivalence of Special Norms on the Lebesgue Space”, Axioms, 10:2 (2021), 64  crossref  isi
    6. Berezhnoi E.I., Kocherova V.V., Perfilyev A.A., “Notes For Trudinger-Moser Inequality”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conference Proceedings, 1880, eds. Kalmenov T., Sadybekov M., Amer Inst Physics, 2017, UNSP 030009  crossref  isi  scopus
    7. A. A. Vasil'eva, “Estimates for the Kolmogorov widths of weighted Sobolev classes on a domain with cusp: case of weights that are functions of the distance from the boundary”, Eurasian Math. J., 8:4 (2017), 102–106  mathnet
    8. O. V. Besov, “Embedding of a weighted Sobolev space and properties of the domain”, Proc. Steklov Inst. Math., 289 (2015), 96–103  mathnet  crossref  crossref  isi  elib
    9. A. A. Vasil'eva, “Widths of Sobolev weight classes on a domain with cusp”, Sb. Math., 206:10 (2015), 1375–1409  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. O. V. Besov, “Embedding of Sobolev Spaces and Properties of the Domain”, Math. Notes, 96:3 (2014), 326–331  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    11. Besov O.V., “Embedding of a Weighted Sobolev Space and Properties of the Domain”, Dokl. Math., 90:3 (2014), 754–757  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    12. Fedor Bakharev, Sergey Nazarov, Guido Sweers, “A sufficient condition for a discrete spectrum of the Kirchhoff plate with an infinite peak”, Math. Mech. Compl. Sys., 1:2 (2013), 233  crossref
    13. O. V. Besov, “Sobolev's embedding theorem for anisotropically irregular domains”, Eurasian Math. J., 2:1 (2011), 32–51  mathnet  mathscinet  zmath
    14. Besov O.V., “Sobolev embedding theorem for anisotropically irregular domains”, Dokl. Math., 83:3 (2011), 367–370  crossref  mathscinet  zmath  isi  elib  elib  scopus
    15. Durán R.G., López Garcia F., “Solutions of the divergence and analysis of the Stokes equations in planar Hölder-$\alpha$ domains”, Math. Models Methods Appl. Sci., 20:1 (2010), 95–120  crossref  mathscinet  zmath  isi  scopus
    16. O. V. Besov, “Spaces of functions of fractional smoothness on an irregular domain”, Proc. Steklov Inst. Math., 269 (2010), 25–45  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:1074
    Full-text PDF :276
    References:90
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025