Abstract:
Necessary and sufficient conditions are obtained for the continuity and compactness of the imbedding operators Wlp(Ω)→Lq(Ω)Wlp(Ω)→Lq(Ω) and Wlp(Ω)→C(Ω)∩L∞(Ω)Wlp(Ω)→C(Ω)∩L∞(Ω) for a domain with an outward peak. More simple sufficient conditions are presented. Applications to the solvability of the Neumann problem for elliptic equations of order 2l2l, l⩾1, for a domain with peak are given. An imbedding theorem for Sobolev spaces on Hölder domains is stated.
Citation:
V. G. Maz'ya, S. V. Poborchi, “Imbedding theorems for Sobolev spaces on domains with peak and on Hölder domains”, Algebra i Analiz, 18:4 (2006), 95–126; St. Petersburg Math. J., 18:4 (2007), 583–605
\Bibitem{MazPob06}
\by V.~G.~Maz'ya, S.~V.~Poborchi
\paper Imbedding theorems for Sobolev spaces on domains with peak and on H\"older domains
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 4
\pages 95--126
\mathnet{http://mi.mathnet.ru/aa80}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2262585}
\zmath{https://zbmath.org/?q=an:1138.46023}
\elib{https://elibrary.ru/item.asp?id=9243974}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 4
\pages 583--605
\crossref{https://doi.org/10.1090/S1061-0022-07-00962-4}
Linking options:
https://www.mathnet.ru/eng/aa80
https://www.mathnet.ru/eng/aa/v18/i4/p95
This publication is cited in the following 16 articles:
O. V. Besov, “Embeddings of Spaces of Functions of Positive Smoothness on a Hölder Domain in Lebesgue Spaces”, Math. Notes, 113:1 (2023), 18–26
O. V. Besov, “Integral Representations and Embeddings of Spaces of Functions of Positive Smoothness on a Hölder Domain”, Proc. Steklov Inst. Math., 323 (2023), 47–58
O. V. Besov, “Conditions for Embeddings of Sobolev Spaces on a Domain with Anisotropic Peak”, Proc. Steklov Inst. Math., 319 (2022), 43–55
Chill R., Meinlschmidt H., Rehberg J., “On the Numerical Range of Second-Order Elliptic Operators With Mixed Boundary Conditions in l-P”, J. Evol. Equ., 21:3 (2021), 3267–3288
Kukushkin M.V., “Note on the Equivalence of Special Norms on the Lebesgue Space”, Axioms, 10:2 (2021), 64
Berezhnoi E.I., Kocherova V.V., Perfilyev A.A., “Notes For Trudinger-Moser Inequality”, International Conference Functional Analysis in Interdisciplinary Applications (FAIA2017), AIP Conference Proceedings, 1880, eds. Kalmenov T., Sadybekov M., Amer Inst Physics, 2017, UNSP 030009
A. A. Vasil'eva, “Estimates for the Kolmogorov widths of weighted Sobolev classes on a domain with cusp: case of weights that are functions of the distance from the boundary”, Eurasian Math. J., 8:4 (2017), 102–106
O. V. Besov, “Embedding of a weighted Sobolev space and properties of the domain”, Proc. Steklov Inst. Math., 289 (2015), 96–103
A. A. Vasil'eva, “Widths of Sobolev weight classes on a domain with cusp”, Sb. Math., 206:10 (2015), 1375–1409
O. V. Besov, “Embedding of Sobolev Spaces and Properties of the Domain”, Math. Notes, 96:3 (2014), 326–331
Besov O.V., “Embedding of a Weighted Sobolev Space and Properties of the Domain”, Dokl. Math., 90:3 (2014), 754–757
Fedor Bakharev, Sergey Nazarov, Guido Sweers, “A sufficient condition for a discrete spectrum of the Kirchhoff plate with an infinite peak”, Math. Mech. Compl. Sys., 1:2 (2013), 233
O. V. Besov, “Sobolev's embedding theorem for anisotropically irregular domains”, Eurasian Math. J., 2:1 (2011), 32–51
Durán R.G., López Garcia F., “Solutions of the divergence and analysis of the Stokes equations in planar Hölder-$\alpha$ domains”, Math. Models Methods Appl. Sci., 20:1 (2010), 95–120
O. V. Besov, “Spaces of functions of fractional smoothness on an irregular domain”, Proc. Steklov Inst. Math., 269 (2010), 25–45