Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2003, Volume 15, Issue 3, Pages 78–103 (Mi aa794)  

This article is cited in 11 scientific papers (total in 11 papers)

Research Papers

On the Lipschitz property of the free boundary in a parabolic problem with obstacle

D. E. Apushkinskayaa, N. N. Ural'tsevab, H. Shahgholianc

a Saarland University
b Saint-Petersburg State University
c Department of Mathematics, Royal Institute of Technology
References:
Received: 18.02.2003
English version:
St. Petersburg Mathematical Journal, 2004, Volume 15, Issue 3, Pages 375–391
DOI: https://doi.org/10.1090/S1061-0022-04-00813-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. E. Apushkinskaya, N. N. Ural'tseva, H. Shahgholian, “On the Lipschitz property of the free boundary in a parabolic problem with obstacle”, Algebra i Analiz, 15:3 (2003), 78–103; St. Petersburg Math. J., 15:3 (2004), 375–391
Citation in format AMSBIB
\Bibitem{ApuUraSha03}
\by D.~E.~Apushkinskaya, N.~N.~Ural'tseva, H.~Shahgholian
\paper On the Lipschitz property of the free boundary in a~parabolic problem with obstacle
\jour Algebra i Analiz
\yr 2003
\vol 15
\issue 3
\pages 78--103
\mathnet{http://mi.mathnet.ru/aa794}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2052937}
\zmath{https://zbmath.org/?q=an:1072.35201}
\transl
\jour St. Petersburg Math. J.
\yr 2004
\vol 15
\issue 3
\pages 375--391
\crossref{https://doi.org/10.1090/S1061-0022-04-00813-1}
Linking options:
  • https://www.mathnet.ru/eng/aa794
  • https://www.mathnet.ru/eng/aa/v15/i3/p78
  • This publication is cited in the following 11 articles:
    1. Apushkinskaya D. Repin S., “Functional a Posteriori Error Estimates For the Parabolic Obstacle Problem”, Comput. Methods Appl. Math., 22:2 (2022), 259–276  crossref  mathscinet  isi
    2. Apushkinskaya D., “Free Boundary Problems Regularity Properties Near the Fixed Boundary Preface”: Apushkinskaya, D, Free Boundary Problems: Regularity Properties Near the Fixed Boundary, Lect. Notes Math., Lecture Notes in Mathematics, 2218, Springer International Publishing Ag, 2018, V+  mathscinet  isi
    3. Sajadini S., “Analysis of Free Boundaries For Convertible Bonds, With a Call Feature”, Complex Var. Elliptic Equ., 59:7 (2014), 912–928  crossref  mathscinet  zmath  isi  scopus
    4. Lindgren E., Monneau R., “Pointwise Estimates for the Heat Equation. Application to the Free Boundary of the Obstacle Problem with Dini Coefficients”, Indiana Univ. Math. J., 62:1 (2013), 171–199  crossref  mathscinet  zmath  isi  scopus
    5. Andersson J., “Boundary regularity for a parabolic obstacle type problem”, Interfaces and Free Boundaries, 12:3 (2010), 279–291  crossref  mathscinet  zmath  isi  scopus
    6. Apushkinskaya D.E., Matevosyan N., Uraltseva N.N., “The behavior of the free boundary close to a fixed boundary in a parabolic problem”, Indiana Univ. Math. J., 58:2 (2009), 583  crossref  mathscinet  zmath  isi  elib  scopus
    7. Shahgholian H., Uraltseva N., Weiss G.S., “A parabolic two-phase obstacle-like equation”, Adv. Math., 221:3 (2009), 861–881  crossref  mathscinet  zmath  isi  elib  scopus
    8. R. Z. Dautov, A. I. Mikheeva, “Exact penalty operators and regularization of parabolic variational inequalities with an obstacle inside a domain”, Differ. Equ., 44:1 (2008), 77–84  crossref  mathscinet  zmath  isi  elib  elib
    9. R. Z. Dautov, A. I. Mikheeva, “On the accuracy of the penalty method for parabolic variational inequalities with an obstacle inside the domain”, Russian Math. (Iz. VUZ), 52:2 (2008), 39–45  mathnet  crossref  mathscinet
    10. A. I. Mikheeva, R. Z. Dautov, “Accuracy of the penalty method for parabolic variational inequalities with an obstacle inside the domain”, Russ Math., 52:2 (2008), 39  crossref
    11. Petrosyan A., Shahgholian H., “Parabolic obstacle problems applied to finance - A free-boundary-regularity approach”, Recent Developments in Nonlinear Partial Differential Equations, Contemporary Mathematics Series, 439, 2007, 117–133  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:454
    Full-text PDF :161
    References:85
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025