Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2003, Volume 15, Issue 1, Pages 118–147 (Mi aa771)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Limiting distributions of theta series on Siegel half-spaces

F. Götzea, M. Gordinb

a Fakultät für Mathematik, Universität Bielefeld, Bielefeld, Germany
b С.-Петербургское отделение Математического института им. В. А. Стеклова, Санкт-Петербург, Россия
References:
Abstract: Let $m>1$ be an integer. For any $Z$ from the Siegel upper half-space we consider the multivariate theta series
$$ \Theta(Z)=\sum_{\bar n\in\mathbb Z^m}\exp(\pi i^t\bar n Z\bar n). $$
The function $\Theta$ is invariant with respect to every substitution $Z\longmapsto Z+P$, where $P$ is a real symmetric matrix with integral entries and even diagonal. Therefore, for any real matrix $Y>0$ the function $\Theta_Y(\cdot)=(\det Y)^{1/4}\Theta(\cdot+iY)$ may be viewed as a complex-valued random variable on the torus $\mathbb T^{m(m+1)/2}$ with the probability Haar measure. We prove that there exists a weak limit of the distribution of $\Theta_{\tau Y}$ as $\tau\to0$, and this limit does not depend on the choice of $Y$. This theorem is an extension of known results for $m=1$ to higher dimension. We also establish the rotational invariance of the limiting distribution. The proof of the main theorem makes use of Dani–Margulis' and Ratner's results on dynamics of unipotent flows.
Keywords: theta series, Siegel's half-space, convergence in distribution, closed horospheres, unipotent flows.
Received: 02.09.2002
English version:
St. Petersburg Mathematical Journal, 2004, Volume 15, Issue 1, Pages 81–102
DOI: https://doi.org/10.1090/S1061-0022-03-00803-3
Bibliographic databases:
Document Type: Article
Language: English
Citation: F. Götze, M. Gordin, “Limiting distributions of theta series on Siegel half-spaces”, Algebra i Analiz, 15:1 (2003), 118–147; St. Petersburg Math. J., 15:1 (2004), 81–102
Citation in format AMSBIB
\Bibitem{GotGor03}
\by F.~G\"otze, M.~Gordin
\paper Limiting distributions of theta series on Siegel half-spaces
\jour Algebra i Analiz
\yr 2003
\vol 15
\issue 1
\pages 118--147
\mathnet{http://mi.mathnet.ru/aa771}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1979719}
\zmath{https://zbmath.org/?q=an:1046.11025}
\transl
\jour St. Petersburg Math. J.
\yr 2004
\vol 15
\issue 1
\pages 81--102
\crossref{https://doi.org/10.1090/S1061-0022-03-00803-3}
Linking options:
  • https://www.mathnet.ru/eng/aa771
  • https://www.mathnet.ru/eng/aa/v15/i1/p118
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:293
    Full-text PDF :126
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024