|
This article is cited in 3 scientific papers (total in 3 papers)
Research Papers
Interpolation of Besov spaces in the nondiagonal case
I. Asekritovaa, N. Kruglyakb a School of Mathematics and System Engineering, Växjö University, Sweden
b Department of Mathematics, Lulea University of Technology, Sweden
Abstract:
In the nondiagonal case, interpolation spaces for a collection of Besov spaces are described. The results are consequences of the fact that, whenever the convex hull of points $(\bar s_0,\eta_0),\dots,(\bar s_n,\eta_n)\in \mathbb R^{m+1}$ includes a ball of $\mathbb R^{m+1}$, we have
$$
(l^{\bar s_0}_{q_0}((X_0,X_1)_{\eta_0,p_0}),\dots,l^{\bar s_n}_{q_n}((X_0,X_1)_{\eta_n,p_n}))=l^{\bar s_{\bar{\theta}}}_q((X_0,X_1)_{\eta_{\bar{\theta}},q}),
$$
where $\bar\theta=(\theta_0,\dots,\theta_n)$ and $(s_{\bar{\theta}},\eta_{\bar{\theta}})=\theta_0(\bar s_0, \eta_0)+\dots+\theta_n(\bar s_n,\eta_n)$.
Received: 21.01.2006
Citation:
I. Asekritova, N. Kruglyak, “Interpolation of Besov spaces in the nondiagonal case”, Algebra i Analiz, 18:4 (2006), 1–9; St. Petersburg Math. J., 18:4 (2007), 511–516
Linking options:
https://www.mathnet.ru/eng/aa76 https://www.mathnet.ru/eng/aa/v18/i4/p1
|
Statistics & downloads: |
Abstract page: | 338 | Full-text PDF : | 108 | References: | 39 | First page: | 3 |
|