Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1996, Volume 8, Issue 6, Pages 57–104 (Mi aa744)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

The Fredholm property of the Neumann problem operator in domains with an exit to infinity in the form of a layer

S. A. Nazarova, K. I. Pileckasb

a Admiral Makarov State Maritime Academy
b Institute of Mathematics and Informatics
Received: 11.03.1996
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. A. Nazarov, K. I. Pileckas, “The Fredholm property of the Neumann problem operator in domains with an exit to infinity in the form of a layer”, Algebra i Analiz, 8:6 (1996), 57–104; St. Petersburg Math. J., 8:6 (1997), 951–983
Citation in format AMSBIB
\Bibitem{NazPil96}
\by S.~A.~Nazarov, K.~I.~Pileckas
\paper The Fredholm property of the Neumann problem operator in domains with an exit to infinity in the form of a layer
\jour Algebra i Analiz
\yr 1996
\vol 8
\issue 6
\pages 57--104
\mathnet{http://mi.mathnet.ru/aa744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1458139}
\zmath{https://zbmath.org/?q=an:0881.35029|0878.35033}
\transl
\jour St. Petersburg Math. J.
\yr 1997
\vol 8
\issue 6
\pages 951--983
Linking options:
  • https://www.mathnet.ru/eng/aa744
  • https://www.mathnet.ru/eng/aa/v8/i6/p57
  • This publication is cited in the following 4 articles:
    1. Pileckas, K, “Weighted coercive estimates of solutions to the Stokes problem in parabolically growing layer”, Asymptotic Analysis, 54:3–4 (2007), 211  mathscinet  zmath  isi  elib
    2. Nazarov, SA, “Neumann problem in a perforated layer (sieve)”, Asymptotic Analysis, 44:3–4 (2005), 259  mathscinet  zmath  isi  elib
    3. K. Pileckas, “Asymptotics of solutions of the stationary Navier–Stokes system of equations in a domain of layer type”, Sb. Math., 193:12 (2002), 1801–1836  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. Nazarov, SA, “On the Fredholm property of the Stokes operator in a layer-like domain”, Zeitschrift fur Analysis und Ihre Anwendungen, 20:1 (2001), 155  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:387
    Full-text PDF :189
    References:2
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025