Abstract:
Refinements and generalizations of the classical variational principles of conformal mappings are presented; mainly, they follow from potential theory and symmetrization. Part of the results can be viewed as properties of Robin functions and Robin capacities, and also as distortion theorems for univalent functions in finitely connected domains.
Citation:
V. N. Dubinin, E. G. Prilepkina, “On variational principles of conformal mappings”, Algebra i Analiz, 18:3 (2006), 39–62; St. Petersburg Math. J., 18:3 (2007), 373–389
\Bibitem{DubPri06}
\by V.~N.~Dubinin, E.~G.~Prilepkina
\paper On variational principles of conformal mappings
\jour Algebra i Analiz
\yr 2006
\vol 18
\issue 3
\pages 39--62
\mathnet{http://mi.mathnet.ru/aa73}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2255850}
\zmath{https://zbmath.org/?q=an:1146.30011}
\elib{https://elibrary.ru/item.asp?id=12894791}
\transl
\jour St. Petersburg Math. J.
\yr 2007
\vol 18
\issue 3
\pages 373--389
\crossref{https://doi.org/10.1090/S1061-0022-07-00955-7}
Linking options:
https://www.mathnet.ru/eng/aa73
https://www.mathnet.ru/eng/aa/v18/i3/p39
This publication is cited in the following 8 articles:
V. N. Dubinin, “Variational formulae for conformal capacity”, Sb. Math., 215:1 (2024), 90–100
V. V. Goryainov, “Holomorphic Mappings of a Strip into Itself with Bounded Distortion at Infinity”, Proc. Steklov Inst. Math., 298 (2017), 94–103
V. N. Dubinin, “Quadratic forms involving Green's and Robin functions”, Sb. Math., 200:10 (2009), 1439–1452
Karp D., Prilepkina E., “Reduced modulus with free boundary and its applications”, Ann. Acad. Sci. Fenn. Math., 34:2 (2009), 353–378
V. N. Dubinin, “On I. P. Mityuk's results on the the behavior of the inner radius of a domain and the condenser's capacity under regular mappings”, J. Math. Sci. (N. Y.), 166:2 (2010), 145–154
V. N. Dubinin, D. B. Karp, V. A. Shlyk, “Izbrannye zadachi geometricheskoi teorii funktsii i teorii potentsiala”, Dalnevost. matem. zhurn., 8:1 (2008), 46–95
V. V. Vasin, V. N. Dubinin, V. G. Romanov, “Itogovyi nauchnyi otchet po mezhdistsiplinarnomu integratsionnomu proektu SO RAN: “Razrabotka teorii i vychislitelnoi tekhnologii resheniya obratnykh i ekstremalnykh zadach s prilozheniem v matematicheskoi fizike i gravimagnitorazvedke””, Sib. elektron. matem. izv., 5 (2008), 427–439
V. N. Dubinin, “Emkosti kondensatorov i printsipy mazhoratsii v geometricheskoi teorii funktsii kompleksnogo peremennogo [Itogovyi nauchnyi otchet po mezhdistsiplinarnomu integratsionnomu proektu SO RAN: “Razrabotka teorii i vychislitelnoi tekhnologii resheniya obratnykh i ekstremalnykh zadach s prilozheniem v matematicheskoi fizike i gravimagnitorazvedke”]”, Sib. elektron. matem. izv., 5 (2008), 465–482