Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2005, Volume 17, Issue 2, Pages 170–214 (Mi aa665)  

This article is cited in 57 scientific papers (total in 57 papers)

Research Papers

A tropical approach to enumerative geometry

E. Shustin

Tel Aviv University, School of Mathematical Sciences, Aviv, Tel Aviv, Israel
References:
Abstract: A detailed algebraic-geometric background is presented for the tropical approach to enumeration of singular curves on toric surfaces, which consists of reducing the enumeration of algebraic curves to that of non-Archimedean amoebas, the images of algebraic curves by a real-valued non-Archimedean valuation. This idea was proposed by Kontsevich and recently realized by Mikhalkin, who enumerated the nodal curves on toric surfaces [18]. The main technical tools are a refined tropicalization of one-parametric equisingular families of curves and the patchworking construction of singular algebraic curves. The case of curves with a cusp and the case of real nodal curves are also treated.
Received: 20.06.2003
English version:
St. Petersburg Mathematical Journal, 2006, Volume 17, Issue 2, Pages 343–375
DOI: https://doi.org/10.1090/S1061-0022-06-00908-3
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. Shustin, “A tropical approach to enumerative geometry”, Algebra i Analiz, 17:2 (2005), 170–214; St. Petersburg Math. J., 17:2 (2006), 343–375
Citation in format AMSBIB
\Bibitem{Shu05}
\by E. Shustin
\paper A~tropical approach to enumerative geometry
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 2
\pages 170--214
\mathnet{http://mi.mathnet.ru/aa665}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2159589}
\zmath{https://zbmath.org/?q=an:1100.14046}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 2
\pages 343--375
\crossref{https://doi.org/10.1090/S1061-0022-06-00908-3}
Linking options:
  • https://www.mathnet.ru/eng/aa665
  • https://www.mathnet.ru/eng/aa/v17/i2/p170
  • This publication is cited in the following 57 articles:
    1. Eugenii Shustin, “Tropical vertex and real enumerative geometry”, Journal of London Math Soc, 109:1 (2024)  crossref
    2. Eugenii Shustin, “Enumeration of non-nodal real plane rational curves”, Math. Z., 307:4 (2024)  crossref
    3. Thomas Blomme, “Tropical curves in abelian surfaces II: Enumeration of curves in linear systems”, Trans. Amer. Math. Soc., 376:8 (2023), 5641  crossref
    4. Thomas Blomme, “Floor diagrams and enumerative invariants of line bundles over an elliptic curve”, Compositio Math., 159:8 (2023), 1741  crossref
    5. Thomas Blomme, “An imaginary refined count for some real rational curves”, Beitr Algebra Geom, 64:3 (2023), 721  crossref
    6. Blomme T., “Refined Count For Rational Tropical Curves in Arbitrary Dimension”, Math. Ann., 382:3-4 (2022), 1199–1244  crossref  mathscinet  isi  scopus
    7. Lang L., Tyomkin I., “A Note on the Severi Problem For Toric Surfaces”, Math. Ann., 2022  crossref  isi
    8. Uriel Sinichkin, “Enumeration of algebraic and tropical singular hypersurfaces”, Trans. Amer. Math. Soc., 375:12 (2022), 8529  crossref
    9. Hülya Argüz, Pierrick Bousseau, “Real Log Curves in Toric Varieties, Tropical Curves, and Log Welschinger Invariants”, Annales de l'Institut Fourier, 72:4 (2022), 1547  crossref
    10. B. Ya. Kazarnovskii, A. G. Khovanskii, A. I. Esterov, “Newton polytopes and tropical geometry”, Russian Math. Surveys, 76:1 (2021), 91–175  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. Ganor Ya., Shustin E., “Enumeration of Unicuspidal Curves of Any Degree and Genus on Toric Surfaces”, Int. Math. Res. Notices, 2021  crossref  isi
    12. St. Petersburg Math. J., 32:2 (2021), 279–306  mathnet  crossref  isi  elib
    13. Takahashi T., “Tropicalization of 1-Tacnodal Curves on Toric Surfaces”, Osaka J. Math., 57:2 (2020), 451–491  mathscinet  isi
    14. Takahashi T., “A Note on Tropical Curves and the Newton Diagrams of Plane Curve Singularities”, Tokyo J. Math., 42:1 (2019), 51–61  crossref  mathscinet  isi
    15. Brugalle E., Degtyarev A., Itenberg I., Mangolte F., “Real Algebraic Curves With Large Finite Number of Real Points”, Eur. J. Math., 5:3, SI (2019), 686–711  crossref  mathscinet  isi
    16. Mikhalkin G., “Examples of Tropical-to-Lagrangian Correspondence”, Eur. J. Math., 5:3, SI (2019), 1033–1066  crossref  mathscinet  isi  scopus
    17. Esterov A., “Characteristic Classes of Affine Varieties and Plucker Formulas For Affine Morphisms”, J. Eur. Math. Soc., 20:1 (2018), 15–59  crossref  mathscinet  zmath  isi  scopus
    18. Markwig H., Markwig T., Shustin E., “Enumeration of Complex and Real Surfaces Via Tropical Geometry”, Adv. Geom., 18:1 (2018), 69–100  crossref  mathscinet  zmath  isi
    19. Itenberg I., Kharlamov V., Shustin E., “Relative Enumerative Invariants of Real Nodal Del Pezzo Surfaces”, Sel. Math.-New Ser., 24:4 (2018), 2927–2990  crossref  mathscinet  zmath  isi  scopus
    20. Leviant P., Shustin E., “Morsifications of Real Plane Curve Singularities”, J. Singul., 18 (2018), 307–328  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:831
    Full-text PDF :444
    References:95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025