Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2005, Volume 17, Issue 1, Pages 53–83 (Mi aa646)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results

A. I. Bobenkoa, D. Matthesb, Yu. B. Surisa

a Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
b Institut für Mathematik, Universität Mainz, Mainz, Germany
References:
Abstract: A discretization of the Goursat problem for a class of nonlinear hyperbolic systems is proposed. Local $C^\infty$-convergence of the discrete solutions is proved, and the approximation error is estimated. The results hold in arbitrary dimensions, and for an arbitrary number of dependent variables. The sine-Gordon equation serves as a guiding example for application of the approximation theory. As the main application, a geometric Goursat problem for surfaces of constant negative Gaussian curvature ($K$-surfaces) is formulated, and approximation by discrete $K$-surfaces is proved. The result extends to the simultaneous approximation of Bäcklund transformations. This rigorously justifies the generally accepted belief that the theory of integrable surfaces and their transformations may be obtained as the continuum limit of a unifying multidimensional discrete theory.
Received: 01.09.2004
English version:
St. Petersburg Mathematical Journal, 2006, Volume 17, Issue 1, Pages 39–61
DOI: https://doi.org/10.1090/S1061-0022-06-00892-2
Bibliographic databases:
Document Type: Article
Language: English
Citation: A. I. Bobenko, D. Matthes, Yu. B. Suris, “Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results”, Algebra i Analiz, 17:1 (2005), 53–83; St. Petersburg Math. J., 17:1 (2006), 39–61
Citation in format AMSBIB
\Bibitem{BobMatSur05}
\by A. I. Bobenko, D.~Matthes, Yu. B. Suris
\paper Nonlinear hyperbolic equations in surface theory: integrable discretizations and approximation results
\jour Algebra i Analiz
\yr 2005
\vol 17
\issue 1
\pages 53--83
\mathnet{http://mi.mathnet.ru/aa646}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2140674}
\zmath{https://zbmath.org/?q=an:1098.53005}
\transl
\jour St. Petersburg Math. J.
\yr 2006
\vol 17
\issue 1
\pages 39--61
\crossref{https://doi.org/10.1090/S1061-0022-06-00892-2}
Linking options:
  • https://www.mathnet.ru/eng/aa646
  • https://www.mathnet.ru/eng/aa/v17/i1/p53
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :124
    References:45
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024