Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2004, Volume 16, Issue 6, Pages 1–27 (Mi aa637)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

Spectral analysis of the generalized surface maryland model

F. Bentoselaa, Ph. Brieta, L. Pasturb

a Centre de Physique Theorique, Luminy, Marseille, France
b U.F.R.de Mathématiques Université Paris 7, France
References:
Abstract: The $d$-dimensional discrete Schrödinger operator whose potential is supported on the subspace $\mathbb Z^{d_2}$ of $\mathbb Z^d$ is considered: $H=H_a+V_M$, where $H_a=H_0+V_a$, $H_0$ is the $d$-dimensional discrete Laplacian, $V_a$ is a constant “surface” potential, $V_a(\mathrm x)=a\delta(x_1)$, $\mathrm x=(x_1,x_2)$, $x_1\in\mathbb Z^{d_1}$, $x_2\in\mathbb Z^{d_2}$, $d_1+d_2=d$ and $V_M(\mathrm x)=g\delta(x_1)\tan\pi(\alpha\cdot x_2+\omega)$ with $\alpha\in\mathbb R^{d_2}$, $\omega\in[0,1)$. It is proved that if the components of $\alpha$ are rationally independent, i.e., the surface potential is quasiperiodic, then the spectrum of $H$ on the interval $[-d,d]$ (coinciding with the spectrum of the discrete Laplacian) is purely absolutely continuous, and the associated generalized eigenfunctions have the form of the sum of the incident wave and waves reflected by the surface potential and propagating into the bulk of $\mathbb Z^d$. If, in addition, $\alpha$ satisfies a certain Diophantine condition, then the remaining part $\mathbb R\setminus[-d,d]$ of the spectrum is pure point, dense, and of multiplicity one, and the associated eigenfunctions decay exponentially in both $x_1$ and $x_2$ (localized surface states). Also, the ase of a rational $\alpha=p/q$ for $d_1=d_2=1$ (i.e., the case of a periodic surface potential) is discussed. In this case the entire spectrum is purely absolutely continuous, and besides the bulk waves there are also surface waves whose amplitude decays exponentially as $|x_1|\to\infty$ but does not decay in $x_2$. The part of the spectrum corresponding to the surface states consists of $q$ separated bands. For large $q$ the bands outside of $[-d,d]$ are exponentially small in $q$, and converge in a natural sense to the pure point spectrum of the quasiperiodic case with Diophantine $\alpha$'s.
Received: 17.03.2004
English version:
St. Petersburg Mathematical Journal, 2005, Volume 16, Issue 6, Pages 923–942
DOI: https://doi.org/10.1090/S1061-0022-05-00884-8
Bibliographic databases:
Document Type: Article
Language: English
Citation: F. Bentosela, Ph. Briet, L. Pastur, “Spectral analysis of the generalized surface maryland model”, Algebra i Analiz, 16:6 (2004), 1–27; St. Petersburg Math. J., 16:6 (2005), 923–942
Citation in format AMSBIB
\Bibitem{BenBriPas04}
\by F.~Bentosela, Ph.~Briet, L. Pastur
\paper Spectral analysis of the generalized surface maryland model
\jour Algebra i Analiz
\yr 2004
\vol 16
\issue 6
\pages 1--27
\mathnet{http://mi.mathnet.ru/aa637}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2117447}
\zmath{https://zbmath.org/?q=an:1093.82009}
\transl
\jour St. Petersburg Math. J.
\yr 2005
\vol 16
\issue 6
\pages 923--942
\crossref{https://doi.org/10.1090/S1061-0022-05-00884-8}
Linking options:
  • https://www.mathnet.ru/eng/aa637
  • https://www.mathnet.ru/eng/aa/v16/i6/p1
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :92
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024