Abstract:
In this paper, the nonexistence of tight spherical designs is shown in some cases left open to the date. Tight spherical 5-designs may exist in dimension n=(2m+1)2−2, and existence is known only for m=1,2. In the paper, existence is ruled out under a certain arithmetic condition on the integer m, satisfied by infinitely many values of m, including m=4. Also, nonexistence is shown for m=3. Tight spherical 7-designs may exist in dimension n=3d2−4, and existence is known only for d=2,3. In the paper, existence is ruled out under a certain arithmetic condition on d, satisfied by infinitely many values of d, including d=4. Also, nonexistence is shown for d=5. The fact that the above arithmetic conditions on m for 5-designs and on d for 7-designs are satisfied by infinitely many values of m, d, respectively, is shown in the appendix written by Y.-F. S. Pétermann.
Citation:
E. Bannai, A. Munemasa, B. Venkov, “The nonexistence of certain tight spherical designs”, Algebra i Analiz, 16:4 (2004), 1–23; St. Petersburg Math. J., 16:4 (2005), 609–625
\Bibitem{BanMunVen04}
\by E.~Bannai, A.~Munemasa, B.~Venkov
\paper The nonexistence of certain tight spherical designs
\jour Algebra i Analiz
\yr 2004
\vol 16
\issue 4
\pages 1--23
\mathnet{http://mi.mathnet.ru/aa616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2090848}
\zmath{https://zbmath.org/?q=an:1072.05017}
\transl
\jour St. Petersburg Math. J.
\yr 2005
\vol 16
\issue 4
\pages 609--625
\crossref{https://doi.org/10.1090/S1061-0022-05-00868-X}
Linking options:
https://www.mathnet.ru/eng/aa616
https://www.mathnet.ru/eng/aa/v16/i4/p1
This publication is cited in the following 52 articles:
Dmitriy Bilyk, Alexey Glazyrin, Ryan W. Matzke, Josiah Park, Oleksandr Vlasiuk, 2023 57th Asilomar Conference on Signals, Systems, and Computers, 2023, 522
de Laat D., Machado F.C., de Oliveira Filho F.M., Vallentin F., “K-Point Semidefinite Programming Bounds For Equiangular Lines”, Math. Program., 194:1-2 (2022), 533–567
Benjamin Nasmith, “Octonions and the two strictly projective tight 5-designs”, Algebraic Combinatorics, 5:3 (2022), 401
Iverson J.W., King E.J., Mixon D.G., “A Note on Tight Projective 2-Designs”, J. Comb Des., 29:12 (2021), 809–832
Bannai E., Bannai E., Xiang Z., Yu W.-H., Zhu Ya., “Classification of Spherical 2-Distance (4,2,1)-Designs By Solving Diophantine Equations”, Taiwan. J. Math., 25:1 (2021), 1–22
Boyvalenkov P., Stoyanova M., “Linear Programming Bounds For Covering Radius of Spherical Designs”, Results Math., 76:2 (2021), 95
Dostert M., De Laat D., Moustrou Ph., “Exact Semidefinite Programming Bounds For Packing Problems”, SIAM J. Optim., 31:2 (2021), 1433–1458
Gonzalez Merino B., Schymura M., “On the Reverse Isodiametric Problem and Dvoretzky-Rogers-Type Volume Bounds”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 114:3 (2020), 136
Daniel Hughes, Shayne Waldron, “Spherical half-designs of high order”, Involve, 13:2 (2020), 193
King E.J., Tang X., “New Upper Bounds For Equiangular Lines By Pillar Decomposition”, SIAM Discret. Math., 33:4 (2019), 2479–2508
Yu W.-H., “New Bounds For Equiangular Lines and Spherical Two-Distance Sets”, SIAM Discret. Math., 31:2 (2017), 908–917
A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Automorphisms of strongly regular graphs with parameters (1305,440,115,165)”, Proc. Steklov Inst. Math. (Suppl.), 304:1 (2019), S112–S122