Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2004, Volume 16, Issue 4, Pages 1–23 (Mi aa616)  

This article is cited in 52 scientific papers (total in 52 papers)

Research Papers

The nonexistence of certain tight spherical designs

E. Bannaia, A. Munemasab, B. Venkovc

a Graduate school of Mathematics, Kyushu University, Fukuoka, Japan
b Graduate School of Information Sciences, Tohoku University, Sendai, Japan
c Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia
References:
Abstract: In this paper, the nonexistence of tight spherical designs is shown in some cases left open to the date. Tight spherical 5-designs may exist in dimension n=(2m+1)22, and existence is known only for m=1,2. In the paper, existence is ruled out under a certain arithmetic condition on the integer m, satisfied by infinitely many values of m, including m=4. Also, nonexistence is shown for m=3. Tight spherical 7-designs may exist in dimension n=3d24, and existence is known only for d=2,3. In the paper, existence is ruled out under a certain arithmetic condition on d, satisfied by infinitely many values of d, including d=4. Also, nonexistence is shown for d=5. The fact that the above arithmetic conditions on m for 5-designs and on d for 7-designs are satisfied by infinitely many values of m, d, respectively, is shown in the appendix written by Y.-F. S. Pétermann.
Received: 03.09.2003
English version:
St. Petersburg Mathematical Journal, 2005, Volume 16, Issue 4, Pages 609–625
DOI: https://doi.org/10.1090/S1061-0022-05-00868-X
Bibliographic databases:
Document Type: Article
Language: English
Citation: E. Bannai, A. Munemasa, B. Venkov, “The nonexistence of certain tight spherical designs”, Algebra i Analiz, 16:4 (2004), 1–23; St. Petersburg Math. J., 16:4 (2005), 609–625
Citation in format AMSBIB
\Bibitem{BanMunVen04}
\by E.~Bannai, A.~Munemasa, B.~Venkov
\paper The nonexistence of certain tight spherical designs
\jour Algebra i Analiz
\yr 2004
\vol 16
\issue 4
\pages 1--23
\mathnet{http://mi.mathnet.ru/aa616}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2090848}
\zmath{https://zbmath.org/?q=an:1072.05017}
\transl
\jour St. Petersburg Math. J.
\yr 2005
\vol 16
\issue 4
\pages 609--625
\crossref{https://doi.org/10.1090/S1061-0022-05-00868-X}
Linking options:
  • https://www.mathnet.ru/eng/aa616
  • https://www.mathnet.ru/eng/aa/v16/i4/p1
  • This publication is cited in the following 52 articles:
    1. Dmitriy Bilyk, Alexey Glazyrin, Ryan W. Matzke, Josiah Park, Oleksandr Vlasiuk, 2023 57th Asilomar Conference on Signals, Systems, and Computers, 2023, 522  crossref
    2. de Laat D., Machado F.C., de Oliveira Filho F.M., Vallentin F., “K-Point Semidefinite Programming Bounds For Equiangular Lines”, Math. Program., 194:1-2 (2022), 533–567  crossref  isi
    3. Benjamin Nasmith, “Octonions and the two strictly projective tight 5-designs”, Algebraic Combinatorics, 5:3 (2022), 401  crossref
    4. Iverson J.W., King E.J., Mixon D.G., “A Note on Tight Projective 2-Designs”, J. Comb Des., 29:12 (2021), 809–832  crossref  mathscinet  isi
    5. Bannai E., Bannai E., Xiang Z., Yu W.-H., Zhu Ya., “Classification of Spherical 2-Distance (4,2,1)-Designs By Solving Diophantine Equations”, Taiwan. J. Math., 25:1 (2021), 1–22  crossref  mathscinet  isi  scopus
    6. Boyvalenkov P., Stoyanova M., “Linear Programming Bounds For Covering Radius of Spherical Designs”, Results Math., 76:2 (2021), 95  crossref  mathscinet  isi
    7. Dostert M., De Laat D., Moustrou Ph., “Exact Semidefinite Programming Bounds For Packing Problems”, SIAM J. Optim., 31:2 (2021), 1433–1458  crossref  mathscinet  isi
    8. Gonzalez Merino B., Schymura M., “On the Reverse Isodiametric Problem and Dvoretzky-Rogers-Type Volume Bounds”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 114:3 (2020), 136  crossref  mathscinet  isi  scopus
    9. Daniel Hughes, Shayne Waldron, “Spherical half-designs of high order”, Involve, 13:2 (2020), 193  crossref
    10. King E.J., Tang X., “New Upper Bounds For Equiangular Lines By Pillar Decomposition”, SIAM Discret. Math., 33:4 (2019), 2479–2508  crossref  mathscinet  isi
    11. Fickus M., Jasper J., Mixon D.G., Peterson J.D., Watson C.E., “Equiangular Tight Frames With Centroidal Symmetry”, Appl. Comput. Harmon. Anal., 44:2 (2018), 476–496  crossref  mathscinet  zmath  isi  scopus
    12. Szollosi F., Ostergard P.R.J., “Enumeration of Seidel Matrices”, Eur. J. Comb., 69 (2018), 169–184  crossref  mathscinet  zmath  isi  scopus
    13. Glazyrin A., Yu W.-H., “Upper Bounds For S-Distance Sets and Equiangular Lines”, Adv. Math., 330 (2018), 810–833  crossref  mathscinet  zmath  isi  scopus
    14. Bannai E., Zhao D., Zhu L., Zhu Ya., Zhu Y., “Half of An Antipodal Spherical Design”, Arch. Math., 110:5 (2018), 459–466  crossref  mathscinet  zmath  isi  scopus
    15. Nozaki H., Suda Sh., “Complex Spherical Codes With Three Inner Products”, Discret. Comput. Geom., 60:2 (2018), 294–317  crossref  mathscinet  isi  scopus
    16. SeungHyun Shin, “Nonexistence of certain pseudogeometric graphs”, Discrete Mathematics, 341:4 (2018), 1125  crossref
    17. Bannai E., Bannai E., Tanaka H., Zhu Ya., “Design Theory from the Viewpoint of Algebraic Combinatorics”, Graphs Comb., 33:1 (2017), 1–41  crossref  mathscinet  zmath  isi  scopus
    18. Foucart S., Skrzypek L., “On maximal relative projection constants”, J. Math. Anal. Appl., 447:1 (2017), 309–328  crossref  mathscinet  zmath  isi  scopus
    19. Yu W.-H., “New Bounds For Equiangular Lines and Spherical Two-Distance Sets”, SIAM Discret. Math., 31:2 (2017), 908–917  crossref  mathscinet  zmath  isi  scopus
    20. A. A. Makhnev, D. V. Paduchikh, M. M. Khamgokova, “Automorphisms of strongly regular graphs with parameters (1305,440,115,165)”, Proc. Steklov Inst. Math. (Suppl.), 304:1 (2019), S112–S122  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:737
    Full-text PDF :273
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025