Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2004, Volume 16, Issue 3, Pages 56–98 (Mi aa610)  

This article is cited in 36 scientific papers (total in 36 papers)

Research Papers

Asymptotics of the solutions of the Neumann problem for hyperbolic systems in domains with conic points

A. Yu. Kokotova, B. A. Plamenevskiib

a Concordia University, Montreal
b St. Petersburg State University
References:
Received: 01.12.2003
English version:
St. Petersburg Mathematical Journal, 2005, Volume 16, Issue 3, Pages 477–506
DOI: https://doi.org/10.1090/S1061-0022-05-00862-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Kokotov, B. A. Plamenevskii, “Asymptotics of the solutions of the Neumann problem for hyperbolic systems in domains with conic points”, Algebra i Analiz, 16:3 (2004), 56–98; St. Petersburg Math. J., 16:3 (2005), 477–506
Citation in format AMSBIB
\Bibitem{KokPla04}
\by A.~Yu.~Kokotov, B.~A.~Plamenevskii
\paper Asymptotics of the solutions of the Neumann problem for hyperbolic systems in domains with conic points
\jour Algebra i Analiz
\yr 2004
\vol 16
\issue 3
\pages 56--98
\mathnet{http://mi.mathnet.ru/aa610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2083566}
\zmath{https://zbmath.org/?q=an:1073.35153}
\transl
\jour St. Petersburg Math. J.
\yr 2005
\vol 16
\issue 3
\pages 477--506
\crossref{https://doi.org/10.1090/S1061-0022-05-00862-9}
Linking options:
  • https://www.mathnet.ru/eng/aa610
  • https://www.mathnet.ru/eng/aa/v16/i3/p56
  • This publication is cited in the following 36 articles:
    1. P. A. Bakhvalov, “Efficient Evaluation of the Solution for the Planar Wave Diffraction in a 2D Sector”, Acoust. Phys., 69:4 (2023), 415  crossref
    2. Alessandra Aimi, Giulia Di Credico, Heiko Gimperlein, Ernst P. Stephan, “Higher-order time domain boundary elements for elastodynamics: graded meshes and hp versions”, Numer. Math., 154:1-2 (2023), 35  crossref
    3. Lise-Marie Imbert-Gérard, Andrea Moiola, Paul Stocker, “A space–time quasi-Trefftz DG method for the wave equation with piecewise-smooth coefficients”, Math. Comp., 92:341 (2022), 1211  crossref
    4. Korikov D.V., “Asymptotics of ‘Stress Intensity Factors’ For Solutions to Wave Equation At a Crack Tip Close to External Boundary”, Appl. Anal., 2021  crossref  isi  scopus
    5. Dmitrii Korikov, Boris Plamenevskii, Oleg Sarafanov, Operator Theory: Advances and Applications, 284, Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains, 2021, 129  crossref
    6. P. A. Bakhvalov, “Integralnoe predstavlenie resheniya zadachi o difraktsii akusticheskogo impulsa v sektore s uglom $2\pi/n$ i ego chislennaya approksimatsiya”, Preprinty IPM im. M. V. Keldysha, 2020, 015, 23 pp.  mathnet  crossref
    7. Gimperlein H., Ozdemir C., Stark D., Stephan E.P., “Hp-Version Time Domain Boundary Elements For the Wave Equation on Quasi-Uniform Meshes”, Comput. Meth. Appl. Mech. Eng., 356 (2019), 145–174  crossref  mathscinet  isi
    8. Gimperlein H., Meyer F., Oezdemir C., Stark D., Stephan E.P., “Boundary Elements With Mesh Refinements For the Wave Equation”, Numer. Math., 139:4 (2018), 867–912  crossref  mathscinet  zmath  isi  scopus
    9. Mueller F., Schotzau D., Schwab Ch., “Discontinuous Galerkin Methods For Acoustic Wave Propagation in Polygons”, J. Sci. Comput., 77:3, SI (2018), 1909–1935  crossref  mathscinet  zmath  isi  scopus
    10. Korikov D., Plamenevskii B., “Asymptotics of Solutions to Nonstationary Maxwell System in Domains With Small Cavities”, 2018 Days on Diffraction (Dd), eds. Motygin O., Kiselev A., Goray L., Kazakov A., Kirpichnikova A., Perel M., IEEE, 2018, 176–181  crossref  isi
    11. D. V. Korikov, “Linear Oscillations of Thin Plates with Corners and Cracks”, J Math Sci, 235:3 (2018), 275  crossref
    12. Nguyen Manh Hung, Nguyen Thi Lien, “on the Asymptotic Formulas of Solutions To the Boundary Value Problem Without Initial Condition For Schrodinger Systems in Domain With Conical Points”, Nonlinear Anal.-Theory Methods Appl., 130 (2016), 18–30  crossref  mathscinet  zmath  isi  scopus
    13. D. V. Korikov, B. A. Plamenevskiǐ, “Asymptotics of solutions for stationary and nonstationary Maxwell systems in a domain with small holes”, St. Petersburg Math. J., 28:4 (2017), 507–554  mathnet  crossref  mathscinet  isi  elib
    14. Mueller F. Schwab Ch., “Finite elements with mesh refinement for elastic wave propagation in polygons”, Math. Meth. Appl. Sci., 39:17 (2016), 5027–5042  crossref  mathscinet  zmath  isi  scopus
    15. Mueller F.L. Schwab Ch., “Finite Elements With Mesh Refinement For Wave Equations in Polygons”, J. Comput. Appl. Math., 283 (2015), 163–181  crossref  mathscinet  zmath  isi  scopus
    16. D. V. Korikov, “Asymptotic behavior of solutions to wave equation in domain with a small hole”, St. Petersburg Math. J., 26:5 (2015), 813–838  mathnet  crossref  mathscinet  isi  elib  elib
    17. Nguyen Manh Hung, Phung Kim Chuc, “Asymptotic of Solutions For Second Ibvp For Hyperbolic Systems in Non-Smooth Domains”, Appl. Anal., 93:5 (2014), 1010–1035  crossref  mathscinet  zmath  isi  scopus
    18. Vu Trong Luong, Nguyen Thi Hue, “On the Asymptotic of Solution To the Dirichlet Problem For Hyperbolic Equations in Cylinders With Edges”, Electron. J. Qual. Theory Differ., 2014, no. 10, 1–15  crossref  mathscinet  isi
    19. Bellis C., Bonnet M., “Qualitative Identification of Cracks Using 3D Transient Elastodynamic Topological Derivative: Formulation and FE Implementation”, Comput. Meth. Appl. Mech. Eng., 253 (2013), 89–105  crossref  mathscinet  zmath  isi  scopus
    20. Nguyen Manh Hung, Hoang Viet Long, Nguyen Thi Kim Son, “On the Asymptotics of Solutions to the Second Initial Boundary Value Problem for Schrodinger Systems in Domains with Conical Points”, Appl. Mat., 58:1 (2013), 63–91  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:805
    Full-text PDF :185
    References:115
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025