Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2004, Volume 16, Issue 1, Pages 207–238 (Mi aa594)  

This article is cited in 30 scientific papers (total in 30 papers)

Research Papers

Spectral shift function in strong magnetic fields

V. Bruneaua, A. Pushitskib, G. Raikovc

a Mathematiques Appliquées de Bordeaux, Université Bordeaux I, Talence, France
b Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom
c Departamento de Matemáticas, Universidad de Chile, Santiago, Chile
References:
Abstract: We consider the three-dimensional Schrödinger operator $H$ with constant magnetic field of strength $b>0$, and with continuous electric potential $V\in L^1(\mathbb R^3)$ that admits certain power-like estimates at infinity. The asymptotic behavior as $b\to\infty$ of the spectral shift function $\xi(E;H,H_0)$ is studied for the pair of operators $(H,H_0)$ at the energies $\mathcal E=\mathcal{E}b+\lambda$, $\mathcal E>0$ and $\lambda\in\mathbb R$ being fixed. Two asymptotic regimes are distinguished. In the first one, called asymptotics far from the Landau levels, we pick $\mathcal E/2\notin\mathbb Z$ and $\lambda\in\mathbb R$; then the main term is always of order $\sqrt b$, and is independent of $\lambda$. In the second asymptotic regime, called asymptotics near a Landau level, we choose $\mathcal E=2q_0$, $q_o\in\mathbb Z_+$, and $\lambda\ne0$; in this case the leading term of the SSF could be of order $b$ or $\sqrt b$ for different $\lambda$.
Received: 27.10.2003
English version:
St. Petersburg Mathematical Journal, 2005, Volume 16, Issue 1, Pages 181–209
DOI: https://doi.org/10.1090/S1061-0022-04-00847-7
Bibliographic databases:
Document Type: Article
UDC: Schr\"odinger operator, spectral shift function, asymptotics.
Language: English
Citation: V. Bruneau, A. Pushitski, G. Raikov, “Spectral shift function in strong magnetic fields”, Algebra i Analiz, 16:1 (2004), 207–238; St. Petersburg Math. J., 16:1 (2005), 181–209
Citation in format AMSBIB
\Bibitem{BruPusRay04}
\by V.~Bruneau, A.~Pushitski, G.~Raikov
\paper Spectral shift function in strong magnetic fields
\jour Algebra i Analiz
\yr 2004
\vol 16
\issue 1
\pages 207--238
\mathnet{http://mi.mathnet.ru/aa594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2069004}
\zmath{https://zbmath.org/?q=an:1082.35115}
\transl
\jour St. Petersburg Math. J.
\yr 2005
\vol 16
\issue 1
\pages 181--209
\crossref{https://doi.org/10.1090/S1061-0022-04-00847-7}
Linking options:
  • https://www.mathnet.ru/eng/aa594
  • https://www.mathnet.ru/eng/aa/v16/i1/p207
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:514
    Full-text PDF :238
    References:95
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024