Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2004, Volume 16, Issue 1, Pages 207–238 (Mi aa594)  

This article is cited in 30 scientific papers (total in 30 papers)

Research Papers

Spectral shift function in strong magnetic fields

V. Bruneaua, A. Pushitskib, G. Raikovc

a Mathematiques Appliquées de Bordeaux, Université Bordeaux I, Talence, France
b Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom
c Departamento de Matemáticas, Universidad de Chile, Santiago, Chile
References:
Abstract: We consider the three-dimensional Schrödinger operator $H$ with constant magnetic field of strength $b>0$, and with continuous electric potential $V\in L^1(\mathbb R^3)$ that admits certain power-like estimates at infinity. The asymptotic behavior as $b\to\infty$ of the spectral shift function $\xi(E;H,H_0)$ is studied for the pair of operators $(H,H_0)$ at the energies $\mathcal E=\mathcal{E}b+\lambda$, $\mathcal E>0$ and $\lambda\in\mathbb R$ being fixed. Two asymptotic regimes are distinguished. In the first one, called asymptotics far from the Landau levels, we pick $\mathcal E/2\notin\mathbb Z$ and $\lambda\in\mathbb R$; then the main term is always of order $\sqrt b$, and is independent of $\lambda$. In the second asymptotic regime, called asymptotics near a Landau level, we choose $\mathcal E=2q_0$, $q_o\in\mathbb Z_+$, and $\lambda\ne0$; in this case the leading term of the SSF could be of order $b$ or $\sqrt b$ for different $\lambda$.
Received: 27.10.2003
English version:
St. Petersburg Mathematical Journal, 2005, Volume 16, Issue 1, Pages 181–209
DOI: https://doi.org/10.1090/S1061-0022-04-00847-7
Bibliographic databases:
Document Type: Article
UDC: Schr\"odinger operator, spectral shift function, asymptotics.
Language: English
Citation: V. Bruneau, A. Pushitski, G. Raikov, “Spectral shift function in strong magnetic fields”, Algebra i Analiz, 16:1 (2004), 207–238; St. Petersburg Math. J., 16:1 (2005), 181–209
Citation in format AMSBIB
\Bibitem{BruPusRay04}
\by V.~Bruneau, A.~Pushitski, G.~Raikov
\paper Spectral shift function in strong magnetic fields
\jour Algebra i Analiz
\yr 2004
\vol 16
\issue 1
\pages 207--238
\mathnet{http://mi.mathnet.ru/aa594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2069004}
\zmath{https://zbmath.org/?q=an:1082.35115}
\transl
\jour St. Petersburg Math. J.
\yr 2005
\vol 16
\issue 1
\pages 181--209
\crossref{https://doi.org/10.1090/S1061-0022-04-00847-7}
Linking options:
  • https://www.mathnet.ru/eng/aa594
  • https://www.mathnet.ru/eng/aa/v16/i1/p207
  • This publication is cited in the following 30 articles:
    1. Cardenas E., Raikov G., Tejeda I., “Spectral Properties of Landau Hamiltonians With Non-Local Potentials”, Asymptotic Anal., 120:3-4 (2020), 337–371  crossref  mathscinet  isi
    2. Behrndt J., Exner P., Holzmann M., Lotoreichik V., “The Landau Hamiltonian With Delta-Potentials Supported on Curves”, Rev. Math. Phys., 32:4 (2020), 2050010  crossref  mathscinet  isi
    3. Bruneau V., Raikov G., “Threshold Singularities of the Spectral Shift Function For Geometric Perturbations of Magnetic Hamiltonians”, Ann. Henri Poincare, 21:5 (2020), 1451–1488  crossref  mathscinet  isi
    4. Rozenblum G., Vasilevski N., “Toeplitz Operators in Polyanalytic Bergman Type Spaces”, Functional Analysis and Geometry: Selim Grigorievich Krein Centennial, Contemporary Mathematics, 733, eds. Kuchment P., Semenov E., Amer Mathematical Soc, 2019, 273–290  crossref  mathscinet  isi  scopus
    5. Miranda P., Popoff N., “Spectrum of the Iwatsuka Hamiltonian At Thresholds”, J. Math. Anal. Appl., 460:2 (2018), 516–545  crossref  mathscinet  zmath  isi  scopus
    6. Bruneau V., Miranda P., “Threshold Singularities of the Spectral Shift Function For a Half-Plane Magnetic Hamiltonian”, J. Funct. Anal., 274:9 (2018), 2499–2531  crossref  mathscinet  zmath  isi  scopus
    7. Sambou D., “on Eigenvalue Accumulation For Non-Self-Adjoint Magnetic Operators”, J. Math. Pures Appl., 109:8 (2017), 306–332  crossref  mathscinet  isi  scopus
    8. Bruneau V., Sambou D., “Spectral Clusters for Magnetic Exterior Problems”, Spectral Theory and Mathematical Physics, Operator Theory: Advances and Applications, 254, eds. Mantoiu M., Raikov G., DeAldecoa R., Springer Int Publishing Ag, 2016, 57–70  crossref  mathscinet  isi
    9. Sambou D., “Counting Function of Magnetic Eigenvalues for Non-definite Sign Perturbations”, Spectral Theory and Mathematical Physics, Operator Theory: Advances and Applications, 254, eds. Mantoiu M., Raikov G., DeAldecoa R., Springer Int Publishing Ag, 2016, 205–221  crossref  mathscinet  isi
    10. Lungenstrass T., Raikov G., “Local Spectral Asymptotics For Metric Perturbations of the Landau Hamiltonian”, Anal. PDE, 8:5 (2015), 1237–1262  crossref  mathscinet  zmath  isi  elib  scopus
    11. Sambou D., “Resonancs Near Thresholds of Magnetic Operators of Pauli and Dirac”, Can. J. Math.-J. Can. Math., 65:5 (2013), 1095–1124  crossref  mathscinet  zmath  isi  scopus
    12. Tiedra de Aldecoa R., “Asymptotics Near +/- m of the Spectral Shift Function for Dirac Operators with Non-Constant Magnetic Fields”, Communications in Partial Differential Equations, 36:1 (2011), 10–41  crossref  mathscinet  zmath  isi  scopus
    13. Pushnitski A., Rozenblum G., “On the Spectrum of Bargmann-Toeplitz Operators with Symbols of a Variable Sign”, J Anal Math, 114 (2011), 317–340  crossref  mathscinet  zmath  isi  elib  scopus
    14. Pushnitski A., “The Birman-Schwinger principle on the essential spectrum”, J Funct Anal, 261:7 (2011), 2053–2081  crossref  mathscinet  zmath  isi  scopus
    15. Goffeng M., “Index formulas and charge deficiencies on the Landau levels”, Journal of Mathematical Physics, 51:2 (2010), 023509  crossref  mathscinet  zmath  adsnasa  isi  scopus
    16. Raikov G.D., “Low Energy Asymptotics of the Spectral Shift Function for Pauli Operators with Nonconstant Magnetic Fields”, Publications of the Research Institute For Mathematical Sciences, 46:3 (2010), 565–590  crossref  mathscinet  zmath  isi  scopus
    17. A. B. Pushnitskii, “An Integer-Valued Version of the Birman–Krein Formula”, Funct. Anal. Appl., 44:4 (2010), 307–312  mathnet  crossref  crossref  mathscinet  zmath  isi
    18. Grigori Rozenblum, International Mathematical Series, 13, Around the Research of Vladimir Maz'ya III, 2010, 331  crossref
    19. Pushnitski A., “Operator theoretic methods for the eigenvalue counting function in spectral gaps”, Ann. Henri Poincaré, 10:4 (2009), 793–822  crossref  mathscinet  zmath  adsnasa  isi  scopus
    20. Briet P., Raikov G., Soccorsi E., “Spectral properties of a magnetic quantum Hamiltonian on a strip”, Asymptot. Anal., 58:3 (2008), 127–155  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:557
    Full-text PDF :256
    References:105
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025