Abstract:
We consider the three-dimensional Schrödinger operator $H$ with constant magnetic field of strength $b>0$, and with continuous electric potential $V\in L^1(\mathbb R^3)$ that admits certain power-like estimates at infinity. The asymptotic behavior as $b\to\infty$ of the spectral shift function $\xi(E;H,H_0)$ is studied for the pair of operators $(H,H_0)$ at the energies $\mathcal E=\mathcal{E}b+\lambda$, $\mathcal E>0$ and $\lambda\in\mathbb R$ being fixed. Two asymptotic regimes are distinguished. In the first one, called
asymptotics far from the Landau levels, we pick $\mathcal E/2\notin\mathbb Z$ and $\lambda\in\mathbb R$; then the main term is always of order $\sqrt b$, and is independent of $\lambda$. In the second asymptotic regime, called asymptotics near a Landau level, we choose $\mathcal E=2q_0$, $q_o\in\mathbb Z_+$, and $\lambda\ne0$; in this case the leading term of the SSF could be of order $b$ or $\sqrt b$ for
different $\lambda$.
Citation:
V. Bruneau, A. Pushitski, G. Raikov, “Spectral shift function in strong magnetic fields”, Algebra i Analiz, 16:1 (2004), 207–238; St. Petersburg Math. J., 16:1 (2005), 181–209
\Bibitem{BruPusRay04}
\by V.~Bruneau, A.~Pushitski, G.~Raikov
\paper Spectral shift function in strong magnetic fields
\jour Algebra i Analiz
\yr 2004
\vol 16
\issue 1
\pages 207--238
\mathnet{http://mi.mathnet.ru/aa594}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2069004}
\zmath{https://zbmath.org/?q=an:1082.35115}
\transl
\jour St. Petersburg Math. J.
\yr 2005
\vol 16
\issue 1
\pages 181--209
\crossref{https://doi.org/10.1090/S1061-0022-04-00847-7}
Linking options:
https://www.mathnet.ru/eng/aa594
https://www.mathnet.ru/eng/aa/v16/i1/p207
This publication is cited in the following 30 articles:
Cardenas E., Raikov G., Tejeda I., “Spectral Properties of Landau Hamiltonians With Non-Local Potentials”, Asymptotic Anal., 120:3-4 (2020), 337–371
Behrndt J., Exner P., Holzmann M., Lotoreichik V., “The Landau Hamiltonian With Delta-Potentials Supported on Curves”, Rev. Math. Phys., 32:4 (2020), 2050010
Bruneau V., Raikov G., “Threshold Singularities of the Spectral Shift Function For Geometric Perturbations of Magnetic Hamiltonians”, Ann. Henri Poincare, 21:5 (2020), 1451–1488
Rozenblum G., Vasilevski N., “Toeplitz Operators in Polyanalytic Bergman Type Spaces”, Functional Analysis and Geometry: Selim Grigorievich Krein Centennial, Contemporary Mathematics, 733, eds. Kuchment P., Semenov E., Amer Mathematical Soc, 2019, 273–290
Miranda P., Popoff N., “Spectrum of the Iwatsuka Hamiltonian At Thresholds”, J. Math. Anal. Appl., 460:2 (2018), 516–545
Bruneau V., Miranda P., “Threshold Singularities of the Spectral Shift Function For a Half-Plane Magnetic Hamiltonian”, J. Funct. Anal., 274:9 (2018), 2499–2531
Sambou D., “on Eigenvalue Accumulation For Non-Self-Adjoint Magnetic Operators”, J. Math. Pures Appl., 109:8 (2017), 306–332
Bruneau V., Sambou D., “Spectral Clusters for Magnetic Exterior Problems”, Spectral Theory and Mathematical Physics, Operator Theory: Advances and Applications, 254, eds. Mantoiu M., Raikov G., DeAldecoa R., Springer Int Publishing Ag, 2016, 57–70
Sambou D., “Counting Function of Magnetic Eigenvalues for Non-definite Sign Perturbations”, Spectral Theory and Mathematical Physics, Operator Theory: Advances and Applications, 254, eds. Mantoiu M., Raikov G., DeAldecoa R., Springer Int Publishing Ag, 2016, 205–221
Lungenstrass T., Raikov G., “Local Spectral Asymptotics For Metric Perturbations of the Landau Hamiltonian”, Anal. PDE, 8:5 (2015), 1237–1262
Sambou D., “Resonancs Near Thresholds of Magnetic Operators of Pauli and Dirac”, Can. J. Math.-J. Can. Math., 65:5 (2013), 1095–1124
Tiedra de Aldecoa R., “Asymptotics Near +/- m of the Spectral Shift Function for Dirac Operators with Non-Constant Magnetic Fields”, Communications in Partial Differential Equations, 36:1 (2011), 10–41
Pushnitski A., Rozenblum G., “On the Spectrum of Bargmann-Toeplitz Operators with Symbols of a Variable Sign”, J Anal Math, 114 (2011), 317–340
Pushnitski A., “The Birman-Schwinger principle on the essential spectrum”, J Funct Anal, 261:7 (2011), 2053–2081
Goffeng M., “Index formulas and charge deficiencies on the Landau levels”, Journal of Mathematical Physics, 51:2 (2010), 023509
Raikov G.D., “Low Energy Asymptotics of the Spectral Shift Function for Pauli Operators with Nonconstant Magnetic Fields”, Publications of the Research Institute For Mathematical Sciences, 46:3 (2010), 565–590
A. B. Pushnitskii, “An Integer-Valued Version of the Birman–Krein Formula”, Funct. Anal. Appl., 44:4 (2010), 307–312
Grigori Rozenblum, International Mathematical Series, 13, Around the Research of Vladimir Maz'ya III, 2010, 331
Pushnitski A., “Operator theoretic methods for the eigenvalue counting function in spectral gaps”, Ann. Henri Poincaré, 10:4 (2009), 793–822
Briet P., Raikov G., Soccorsi E., “Spectral properties of a magnetic quantum Hamiltonian on a strip”, Asymptot. Anal., 58:3 (2008), 127–155