Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1995, Volume 7, Issue 6, Pages 79–103 (Mi aa580)  

This article is cited in 18 scientific papers (total in 19 papers)

Research Papers

Quasiclassical asymptotics of the resolvent of an integral convolution operator with a sine kernel on a finite interval

A. M. Budylin, V. S. Buslaev

St. Petersburg State University, Faculty of Physics
Received: 21.06.1995
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. M. Budylin, V. S. Buslaev, “Quasiclassical asymptotics of the resolvent of an integral convolution operator with a sine kernel on a finite interval”, Algebra i Analiz, 7:6 (1995), 79–103; St. Petersburg Math. J., 7:6 (1996), 925–942
Citation in format AMSBIB
\Bibitem{BudBus95}
\by A.~M.~Budylin, V.~S.~Buslaev
\paper Quasiclassical asymptotics of the resolvent of an integral convolution operator with a~sine kernel on a~finite interval
\jour Algebra i Analiz
\yr 1995
\vol 7
\issue 6
\pages 79--103
\mathnet{http://mi.mathnet.ru/aa580}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1381979}
\zmath{https://zbmath.org/?q=an:0862.35148}
\transl
\jour St. Petersburg Math. J.
\yr 1996
\vol 7
\issue 6
\pages 925--942
Linking options:
  • https://www.mathnet.ru/eng/aa580
  • https://www.mathnet.ru/eng/aa/v7/i6/p79
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024