Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1995, Volume 7, Issue 4, Pages 196–213 (Mi aa567)  

This article is cited in 21 scientific papers (total in 21 papers)

Research Papers

Grothendieck Chow motives of Severi–Brauer varieties

N. A. Karpenko

Mathematisches Institut, Westfälische Wilhelms-Universität Münster
Received: 20.09.1994
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. A. Karpenko, “Grothendieck Chow motives of Severi–Brauer varieties”, Algebra i Analiz, 7:4 (1995), 196–213; St. Petersburg Math. J., 7:4 (1996), 649–661
Citation in format AMSBIB
\Bibitem{Kar95}
\by N.~A.~Karpenko
\paper Grothendieck Chow motives of Severi--Brauer varieties
\jour Algebra i Analiz
\yr 1995
\vol 7
\issue 4
\pages 196--213
\mathnet{http://mi.mathnet.ru/aa567}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1356536}
\zmath{https://zbmath.org/?q=an:0866.14006}
\transl
\jour St. Petersburg Math. J.
\yr 1996
\vol 7
\issue 4
\pages 649--661
Linking options:
  • https://www.mathnet.ru/eng/aa567
  • https://www.mathnet.ru/eng/aa/v7/i4/p196
  • This publication is cited in the following 21 articles:
    1. Karpenko N.A., “Chow Groups of Some Generically Twisted Flag Varieties”, Ann. K-Theory, 2:2 (2017), 341–356  crossref  mathscinet  zmath  isi
    2. Merkurjev A.S., “Essential Dimension”, Bull. Amer. Math. Soc., 54:4 (2017), 635–661  crossref  mathscinet  zmath  isi  scopus
    3. Garibaldi S. Petrov V. Semenov N., “Shells of Twisted Flag Varieties and the Rost Invariant”, Duke Math. J., 165:2 (2016), 285–339  crossref  isi
    4. Semenov N., Zhykhovich M., “Integral Motives, Relative Krull-Schmidt Principle, and Maranda-Type Theorems”, Math. Ann., 363:1-2 (2015), 61–75  crossref  isi
    5. Litt D., “Zeta Functions of Curves With No Rational Points”, Mich. Math. J., 64:2 (2015), 383–395  isi
    6. Shinder E., “On the Motive of the Group of Units of a Division Algebra”, J. K-Theory, 13:3 (2014), 533–561  crossref  isi
    7. De Clercq Ch., “Motivic Rigidity of Severi-Brauer Varieties”, J. Algebra, 373 (2013), 30–38  crossref  isi
    8. Merkurjev A.S., “Essential Dimension: a Survey”, Transform. Groups, 18:2 (2013), 415–481  crossref  isi
    9. Karpenko N.A., “Upper Motives of Algebraic Groups and Incompressibility of Severi-Brauer Varieties”, J. Reine Angew. Math., 677 (2013), 179–198  crossref  isi
    10. Karpenko N.A., “Incompressibility of Quadratic Weil Transfer of Generalized Severi-Brauer Varieties”, Journal of the Institute of Mathematics of Jussieu, 11:1 (2012), 119–131  crossref  isi
    11. Zhykhovich M., “Decompositions of Motives of Generalized Severi-Brauer Varieties”, Doc. Math., 17 (2012), 151–165  isi
    12. Zhykhovich M., “Motivic decomposability of generalized Severi-Brauer varieties”, Comptes Rendus Mathematique, 348:17–18 (2010), 989–992  crossref  isi
    13. Petrov, V, “J-INVARIANT OF LINEAR ALGEBRAIC GROUPS”, Annales Scientifiques de l Ecole Normale Superieure, 41:6 (2008), 1023  mathscinet  zmath  isi
    14. Vishik, A, “Motivic splitting lemma”, Documenta Mathematica, 13 (2008), 81  mathscinet  zmath  isi
    15. Karpenko, NA, “Essential dimension of finite p-groups”, Inventiones Mathematicae, 172:3 (2008), 491  crossref  mathscinet  zmath  adsnasa  isi
    16. K. V. Zainullin, N. S. Semenov, “On classification of projective homogeneous varieties up to motivic isomorphism”, J. Math. Sci. (N. Y.), 140:5 (2007), 692–698  mathnet  crossref  mathscinet  elib  elib
    17. Karpenko, NA, “Canonical p-dimension of algebraic groups”, Advances in Mathematics, 205:2 (2006), 410  crossref  mathscinet  zmath  isi
    18. Calmes, B, “Chow motives of twisted flag varieties”, Compositio Mathematica, 142:4 (2006), 1063  crossref  mathscinet  zmath  isi
    19. Chernousov V., Merkurjev A., “Motivic decomposition of projective homogeneous varieties and the Krull–Schmidt theorem”, Transformation Groups, 11:3 (2006), 371–386  crossref  mathscinet  zmath  isi
    20. Karpenko, NA, “Criteria of motivic equivalence for quadratic forms and central simple algebras”, Mathematische Annalen, 317:3 (2000), 585  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:455
    Full-text PDF :240
    References:2
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025