Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 6, Pages 119–147 (Mi aa542)  

This article is cited in 4 scientific papers (total in 4 papers)

Research Papers

Algebraic cryptography: new constructions and their security against provable break

D. Grigorieva, A. Kojevnikovb, S. J. Nikolenkob

a IRMAR, Université de Rennes, Rennes, France
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (385 kB) Citations (4)
References:
Abstract: Very few known cryptographic primitives are based on noncommutative algebra. Each new scheme is of substantial interest, because noncommutative constructions are secure against many standard cryptographic attacks. On the other hand, cryptography does not provide security proofs that might allow the security of a cryptographic primitive to rely upon structural complexity assumptions. Thus, it is important to investigate weaker notions of security.
In this paper, new constructions of cryptographic primitives based on group invariants are proposed, together with new ways to strengthen them for practical use. Also, the notion of a provable break is introduced, which is a weaker version of the regular cryptographic break. In this new version, an adversary should have a proof that he has correctly decyphered the message. It is proved that the cryptosystems based on matrix group invariants and a version of the Anshel–Anshel–Goldfeld key agreement protocol for modular groups are secure against provable break unless $\mathrm{NP}=\mathrm{RP}$.
Keywords: Algebraic criptography, criptographic primitives, provable break.
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 6, Pages 937–953
DOI: https://doi.org/10.1090/S1061-0022-09-01079-6
Bibliographic databases:
Document Type: Article
MSC: 94A60, 68P25, 11T71
Language: Russian
Citation: D. Grigoriev, A. Kojevnikov, S. J. Nikolenko, “Algebraic cryptography: new constructions and their security against provable break”, Algebra i Analiz, 20:6 (2008), 119–147; St. Petersburg Math. J., 20:6 (2009), 937–953
Citation in format AMSBIB
\Bibitem{GriKojNik08}
\by D.~Grigoriev, A.~Kojevnikov, S.~J.~Nikolenko
\paper Algebraic cryptography: new constructions and their security against provable break
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 6
\pages 119--147
\mathnet{http://mi.mathnet.ru/aa542}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2530896}
\zmath{https://zbmath.org/?q=an:1206.94069}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 6
\pages 937--953
\crossref{https://doi.org/10.1090/S1061-0022-09-01079-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272556200004}
Linking options:
  • https://www.mathnet.ru/eng/aa542
  • https://www.mathnet.ru/eng/aa/v20/i6/p119
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:865
    Full-text PDF :278
    References:89
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024