Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 6, Pages 30–107 (Mi aa540)  

This article is cited in 30 scientific papers (total in 30 papers)

Research Papers

Operator error estimates in the homogenization problem for nonstationary periodic equations

M. Sh. Birman, T. A. Suslina

St. Petersburg State University, Faculty of Physics
References:
Abstract: Matrix periodic differential operators (DO's) $\mathcal A=\mathcal A (\mathbf x,\mathbf D)$ in $L_2({\mathbb R}^d;{\mathbb C}^n)$ are considered. The operators are assumed to admit factorization of the form ${\mathcal A}={\mathcal X}^*{\mathcal X}$, where $\mathcal X$ is a homogeneous first order DO. Let ${\mathcal A}_\varepsilon={\mathcal A}(\varepsilon^{-1}{\mathbf x},{\mathbf D})$, $\varepsilon>0$. The behavior of the solutions ${\mathbf u}_\varepsilon({\mathbf x},\tau)$ of the Cauchy problem for the Schrödinger equation $i\partial_\tau{\mathbf u}_\varepsilon={\mathcal A}_\varepsilon{\mathbf u}_\varepsilon$, and also the behavior of those for the hyperbolic equation $\partial^2_\tau{\mathbf u}_\varepsilon=-{\mathcal A}_\varepsilon{\mathbf u}_\varepsilon$ is studied as $\varepsilon\to 0$. Let ${\mathbf u}_0$ be the solution of the corresponding homogenized problem. Estimates of order $\varepsilon$ are obtained for the $L_2({\mathbb R}^d;{\mathbb C}^n)$-norm of the difference ${\mathbf u}_\varepsilon-{\mathbf u}_0$ for a fixed $\tau\in{\mathbb R}$. The estimates are uniform with respect to the norm of initial data in the Sobolev space $H^s({\mathbb R}^d;{\mathbb C}^n)$, where $s=3$ in the case of the Schrödinger equation and $s=2$ in the case of the hyperbolic equation. The dependence of the constants in estimates on the time $\tau$ is traced, which makes it possible to obtain qualified error estimates for small $\varepsilon$ and large $|\tau|=O(\varepsilon^{-\alpha})$ with appropriate $\alpha<1$.
Keywords: Periodic operators, nonstationary equations, Cauchy problem, threshold effect, homogenization, effective operator.
Received: 10.08.2008
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 6, Pages 873–928
DOI: https://doi.org/10.1090/S1061-0022-09-01077-2
Bibliographic databases:
Document Type: Article
MSC: 35B27
Language: Russian
Citation: M. Sh. Birman, T. A. Suslina, “Operator error estimates in the homogenization problem for nonstationary periodic equations”, Algebra i Analiz, 20:6 (2008), 30–107; St. Petersburg Math. J., 20:6 (2009), 873–928
Citation in format AMSBIB
\Bibitem{BirSus08}
\by M.~Sh.~Birman, T.~A.~Suslina
\paper Operator error estimates in the homogenization problem for nonstationary periodic equations
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 6
\pages 30--107
\mathnet{http://mi.mathnet.ru/aa540}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2530894}
\zmath{https://zbmath.org/?q=an:1206.35028}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 6
\pages 873--928
\crossref{https://doi.org/10.1090/S1061-0022-09-01077-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000272556200002}
Linking options:
  • https://www.mathnet.ru/eng/aa540
  • https://www.mathnet.ru/eng/aa/v20/i6/p30
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:793
    Full-text PDF :207
    References:93
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024