Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 5, Pages 109–154 (Mi aa533)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers

On solvability of the Neumann problem in domains with peak

V. G. Maz'yaa, S. V. Poborchiĭb

a Department of Mathematics, Linköping University, Linköping, Sweden
b St. Petersburg State University, Department of Mathematics and Mechanics
Full-text PDF (498 kB) Citations (2)
References:
Abstract: The Neumann problem is considered for a quasilinear elliptic equation of second order in a multi-dimensional domain with the vertex of an isolated peak on the boundary. Under certain assumptions, the study of the solvability of this problem is reduced to description of the dual to the Sobolev space W1p(Ω)W1p(Ω) or (in the case of a homogeneous equation with nonhomogeneous boundary condition) to the boundary trace space TW1p(Ω)TW1p(Ω). This description involves Sobolev classes with negative smoothness exponent on Lipschitz domains or Lipschitz surfaces, and also some weighted classes of functions on the interval (0,1) of the real line. Main results are proved on the basis of the known explicit description of the spaces TW1p(Ω)TW1p(Ω) on a domain with an outward or inward cusp on the boundary.
Keywords: Neumann problem, Sobolev spaces, domains with cusps, boundary traces, dual spaces.
Received: 14.01.2008
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 5, Pages 757–790
DOI: https://doi.org/10.1090/S1061-0022-09-01072-3
Bibliographic databases:
Document Type: Article
MSC: 35J25
Language: Russian
Citation: V. G. Maz'ya, S. V. Poborchiǐ, “On solvability of the Neumann problem in domains with peak”, Algebra i Analiz, 20:5 (2008), 109–154; St. Petersburg Math. J., 20:5 (2009), 757–790
Citation in format AMSBIB
\Bibitem{MazPob08}
\by V.~G.~Maz'ya, S.~V.~Poborchi{\v\i}
\paper On solvability of the Neumann problem in domains with peak
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 5
\pages 109--154
\mathnet{http://mi.mathnet.ru/aa533}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492362}
\zmath{https://zbmath.org/?q=an:1206.35091}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 5
\pages 757--790
\crossref{https://doi.org/10.1090/S1061-0022-09-01072-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270134200006}
Linking options:
  • https://www.mathnet.ru/eng/aa533
  • https://www.mathnet.ru/eng/aa/v20/i5/p109
  • This publication is cited in the following 2 articles:
    1. V. V. Brovkin, A. A. Kon'kov, “Existence of Solutions to the Second Boundary-Value Problem for the pp-Laplacian on Riemannian Manifolds”, Math. Notes, 109:2 (2021), 171–183  mathnet  crossref  crossref  isi  elib
    2. St. Petersburg Math. J., 30:3 (2019), 485–492  mathnet  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:633
    Full-text PDF :195
    References:113
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025