Abstract:
The problem of semialgebraic Lipschitz classification of quasihomogeneous polynomials on a Hölder triangle is studied. For this problem, the “moduli” are described completely in certain combinatorial terms.
Citation:
L. Birbrair, A. Fernandes, D. Panazzolo, “Lipschitz classification of functions on a Hölder triangle”, Algebra i Analiz, 20:5 (2008), 1–9; St. Petersburg Math. J., 20:5 (2009), 681–686
\Bibitem{BirFerPan08}
\by L.~Birbrair, A.~Fernandes, D.~Panazzolo
\paper Lipschitz classification of functions on a~H\"older triangle
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 5
\pages 1--9
\mathnet{http://mi.mathnet.ru/aa528}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2492357}
\zmath{https://zbmath.org/?q=an:1206.32014}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 5
\pages 681--686
\crossref{https://doi.org/10.1090/S1061-0022-09-01067-X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270134200001}
Linking options:
https://www.mathnet.ru/eng/aa528
https://www.mathnet.ru/eng/aa/v20/i5/p1
This publication is cited in the following 1 articles:
Fernandes A., Ruas M., “Rigidity of Bi-Lipschitz Equivalence of Weighted Homogeneous Function-Germs in the Plane”, Proc. Amer. Math. Soc., 141:4 (2013), 1125–1133