Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 4, Pages 218–240 (Mi aa527)  

This article is cited in 3 scientific papers (total in 3 papers)

Research Papers

On Fourier transforms of functions of Nevanlinna class in a half-plane

F. A. Shamoyan

Bryansk State University
Full-text PDF (321 kB) Citations (3)
References:
Abstract: Let $f$ be a function holomorphic in the upper half-plane and belonging to the Nevanlinna class $N(\mathbb{C}_+)$. Assume that
$$ \varlimsup_{y\to+\infty}\frac{\ln|f(iy)|}{y}\le 0 $$
and that the boundary values of $f$ on the real axis lie in $L^1(\mathbb{R})$. It is shown that if $\vert\widehat{f}(x)\vert\le\frac{1}{\lambda(|x|)}$, $x\in{\mathbb{R}_-}$, where $\widehat{f}$ is the Fourier transform of $f$ and $\lambda$ is a logarithmically convex positive function on ${\mathbb{R}_+}$, then the condition $\int_{1}^{+\infty}\frac{\ln \lambda(x)}{x^{3/2}}\,dx=+\infty$ implies that $\widehat{f}(x)=0$ for all $x\in{\mathbb{R}_-}$. Conversely, if one of the conditions listed above fails, then there exists $f\in N(\mathbb{C}_+) \cap L^1(\mathbb{R})$ with $\widehat{f}(x)\ne 0$, $x\in{\mathbb{R}_-}$.
Keywords: Function of bounded characteristic, Fourier transform.
Received: 05.07.2007
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 4, Pages 665–680
DOI: https://doi.org/10.1090/S1061-0022-09-01066-8
Bibliographic databases:
Document Type: Article
MSC: 30D50
Language: Russian
Citation: F. A. Shamoyan, “On Fourier transforms of functions of Nevanlinna class in a half-plane”, Algebra i Analiz, 20:4 (2008), 218–240; St. Petersburg Math. J., 20:4 (2009), 665–680
Citation in format AMSBIB
\Bibitem{Sha08}
\by F.~A.~Shamoyan
\paper On Fourier transforms of functions of Nevanlinna class in a half-plane
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 4
\pages 218--240
\mathnet{http://mi.mathnet.ru/aa527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2473749}
\zmath{https://zbmath.org/?q=an:1206.42004}
\elib{https://elibrary.ru/item.asp?id=11568882}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 4
\pages 665--680
\crossref{https://doi.org/10.1090/S1061-0022-09-01066-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267802600008}
Linking options:
  • https://www.mathnet.ru/eng/aa527
  • https://www.mathnet.ru/eng/aa/v20/i4/p218
  • This publication is cited in the following 3 articles:
    1. F. A. Shamoyan, “Boundary quasianalyticity and a Phragmén–Lindelöf type theorem in classes of functions of bounded type in tubular domains”, St. Petersburg Math. J., 33:6 (2022), 1035–1046  mathnet  crossref
    2. F. A. Shamoyan, “Fourier transform and quasi-analytic classes of functions of bounded type on tubular domains”, Funct. Anal. Appl., 51:2 (2017), 157–160  mathnet  crossref  crossref  isi  elib
    3. F. A. Shamoyan, “On Fourier transforms of functions of bounded type in tubular domains”, Siberian Math. J., 57:6 (2016), 1100–1116  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:721
    Full-text PDF :183
    References:65
    First page:19
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025