Abstract:
Weighted inequalities ‖f‖q,ν,B0⩽C∑nj=1‖fxj‖p,ωj,B0 of Sobolev type (suppf⊂B0) and of Poincaré type (ˉfν,B0=0) are studied, with different weight functions for each partial derivative fxj, for parallelepipeds B0⊂En,n⩾1. Also, weighted inequalities ‖f‖q,ν⩽C‖Xf‖p,ω of the same type are considered for vector fields X={Xj}, j=1,…,m, with infinitely differentiable coefficients satisfying the Hörmander condition.
Keywords:
Sobolev and Poincaré inequalities, Carnot-Caratheodory metric, Besicovitch property.
Citation:
F. I. Mamedov, R. A. Amanov, “On some nonuniform cases of weighted Sobolev and Poincaré inequalities”, Algebra i Analiz, 20:3 (2008), 163–186; St. Petersburg Math. J., 20:3 (2009), 447–463
\Bibitem{MamAma08}
\by F.~I.~Mamedov, R.~A.~Amanov
\paper On some nonuniform cases of weighted Sobolev and Poincar\'e inequalities
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 3
\pages 163--186
\mathnet{http://mi.mathnet.ru/aa516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2454455}
\zmath{https://zbmath.org/?q=an:1207.46033}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 3
\pages 447--463
\crossref{https://doi.org/10.1090/S1061-0022-09-01055-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497700006}
Linking options:
https://www.mathnet.ru/eng/aa516
https://www.mathnet.ru/eng/aa/v20/i3/p163
This publication is cited in the following 10 articles:
Giuseppe Di Fazio, Farman Mamedov, “On Harnack inequality and Hölder continuity for non uniformly elliptic equations”, Ricerche mat, 2024
F. Mamedov, G. Gasymov, “Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity”, Math. Notes, 112:2 (2022), 251–270
Farman Mamedov, Sara Monsurrò, “Sobolev inequality with non-uniformly degenerating gradient”, Electron. J. Qual. Theory Differ. Equ., 2022, no. 24, 1
Farman Mamedov, “On Harnack inequality and Hölder continuity to the degenerate parabolic equations”, Journal of Differential Equations, 340 (2022), 521
Duran R.G., Otarola E., Salgado A.J., “Stability of the Stokes Projection on Weighted Spaces and Applications”, Math. Comput., 89:324 (2020), 1581–1603
Mamedov F., Mammadzade N., Persson L.-E., “A New Fractional Order Poincare'S Inequality With Weights”, Math. Inequal. Appl., 23:2 (2020), 611–624
Mamedov F., Mammadli S., Shukurov Ya., “On Compact and Bounded Embedding in Variable Exponent Sobolev Spaces and Its Applications”, Arabian J. Math., 9:2 (2020), 401–414
Farman Mamedov, Yashar Shukurov, “A Sawyer-type sufficient condition for the weighted Poincaré inequality”, Positivity, 22:3 (2018), 687
Nochetto R.H., Otarola E., Salgado A.J., “Piecewise Polynomial Interpolation in Muckenhoupt Weighted Sobolev Spaces and Applications”, Numer. Math., 132:1 (2016), 85–130