|
This article is cited in 9 scientific papers (total in 9 papers)
Research Papers
On some nonuniform cases of weighted Sobolev and Poincaré inequalities
F. I. Mamedovab, R. A. Amanova a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
b Dicle University, Diyarbakir, Turkey
Abstract:
Weighted inequalities $\|f\|_{q,\nu,B_0}\le C\sum^{n}_{j=1}\|f_{xj}\|_{p,\omega_j,B_0}$ of Sobolev type $(\operatorname{supp}f\subset B_0)$ and of Poincaré type $(\bar f_{\nu,B_0}=0)$ are studied, with different weight functions for each partial derivative $f_{x_j}$, for parallelepipeds $B_0\subset E_n, n\ge 1$. Also, weighted inequalities $\|f\|_{q,\nu}\le C\| Xf\|_{p,\omega}$ of the same type are considered for vector fields $X=\{X_j\}$, $j=1,\dots,m$, with infinitely differentiable coefficients satisfying the Hörmander condition.
Keywords:
Sobolev and Poincaré inequalities, Carnot-Caratheodory metric, Besicovitch property.
Received: 14.06.2006
Citation:
F. I. Mamedov, R. A. Amanov, “On some nonuniform cases of weighted Sobolev and Poincaré inequalities”, Algebra i Analiz, 20:3 (2008), 163–186; St. Petersburg Math. J., 20:3 (2009), 447–463
Linking options:
https://www.mathnet.ru/eng/aa516 https://www.mathnet.ru/eng/aa/v20/i3/p163
|
Statistics & downloads: |
Abstract page: | 354 | Full-text PDF : | 106 | References: | 50 | First page: | 12 |
|