Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 3, Pages 163–186 (Mi aa516)  

This article is cited in 10 scientific papers (total in 10 papers)

Research Papers

On some nonuniform cases of weighted Sobolev and Poincaré inequalities

F. I. Mamedovab, R. A. Amanova

a Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences
b Dicle University, Diyarbakir, Turkey
References:
Abstract: Weighted inequalities fq,ν,B0Cnj=1fxjp,ωj,B0 of Sobolev type (suppfB0) and of Poincaré type (ˉfν,B0=0) are studied, with different weight functions for each partial derivative fxj, for parallelepipeds B0En,n1. Also, weighted inequalities fq,νCXfp,ω of the same type are considered for vector fields X={Xj}, j=1,,m, with infinitely differentiable coefficients satisfying the Hörmander condition.
Keywords: Sobolev and Poincaré inequalities, Carnot-Caratheodory metric, Besicovitch property.
Received: 14.06.2006
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 3, Pages 447–463
DOI: https://doi.org/10.1090/S1061-0022-09-01055-3
Bibliographic databases:
Document Type: Article
MSC: 46E35
Language: Russian
Citation: F. I. Mamedov, R. A. Amanov, “On some nonuniform cases of weighted Sobolev and Poincaré inequalities”, Algebra i Analiz, 20:3 (2008), 163–186; St. Petersburg Math. J., 20:3 (2009), 447–463
Citation in format AMSBIB
\Bibitem{MamAma08}
\by F.~I.~Mamedov, R.~A.~Amanov
\paper On some nonuniform cases of weighted Sobolev and Poincar\'e inequalities
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 3
\pages 163--186
\mathnet{http://mi.mathnet.ru/aa516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2454455}
\zmath{https://zbmath.org/?q=an:1207.46033}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 3
\pages 447--463
\crossref{https://doi.org/10.1090/S1061-0022-09-01055-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497700006}
Linking options:
  • https://www.mathnet.ru/eng/aa516
  • https://www.mathnet.ru/eng/aa/v20/i3/p163
  • This publication is cited in the following 10 articles:
    1. Giuseppe Di Fazio, Farman Mamedov, “On Harnack inequality and Hölder continuity for non uniformly elliptic equations”, Ricerche mat, 2024  crossref
    2. F. Mamedov, G. Gasymov, “Positive Solutions of Nonuniformly Elliptic Equations with Weighted Convex-Concave Nonlinearity”, Math. Notes, 112:2 (2022), 251–270  mathnet  crossref  crossref
    3. Farman Mamedov, Sara Monsurrò, “Sobolev inequality with non-uniformly degenerating gradient”, Electron. J. Qual. Theory Differ. Equ., 2022, no. 24, 1  crossref
    4. Farman Mamedov, “On Harnack inequality and Hölder continuity to the degenerate parabolic equations”, Journal of Differential Equations, 340 (2022), 521  crossref
    5. Mamedov F., “A Poincare'S Inequality With Non-Uniformly Degenerating Gradient”, Mon.heft. Math., 194:1 (2021), 151–165  crossref  mathscinet  isi
    6. Duran R.G., Otarola E., Salgado A.J., “Stability of the Stokes Projection on Weighted Spaces and Applications”, Math. Comput., 89:324 (2020), 1581–1603  crossref  mathscinet  isi
    7. Mamedov F., Mammadzade N., Persson L.-E., “A New Fractional Order Poincare'S Inequality With Weights”, Math. Inequal. Appl., 23:2 (2020), 611–624  crossref  mathscinet  isi  scopus
    8. Mamedov F., Mammadli S., Shukurov Ya., “On Compact and Bounded Embedding in Variable Exponent Sobolev Spaces and Its Applications”, Arabian J. Math., 9:2 (2020), 401–414  crossref  mathscinet  isi
    9. Farman Mamedov, Yashar Shukurov, “A Sawyer-type sufficient condition for the weighted Poincaré inequality”, Positivity, 22:3 (2018), 687  crossref
    10. Nochetto R.H., Otarola E., Salgado A.J., “Piecewise Polynomial Interpolation in Muckenhoupt Weighted Sobolev Spaces and Applications”, Numer. Math., 132:1 (2016), 85–130  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:368
    Full-text PDF :115
    References:57
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025