Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 1, Pages 190–236 (Mi aa502)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness. II

B. N. Khabibullinab, F. B. Khabibullinab, L. Yu. Cherednikovaab

a Bashkir State University
b Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Full-text PDF (546 kB) Citations (5)
References:
Abstract: Let $\Omega$ be a domain in the complex plane $\mathbb C$, $H(\Omega)$ the space of functions holomorphic in $\Omega$, and $\mathscr P$ a family of functions subharmonic in $\Omega$. Denote by $H_{\mathscr P}(\Omega)$ the class of functions $f\in H(\Omega)$ satisfying $|f(z)|\leq C_f\exp p_f(z)$ for all $z\in\Omega$, where $p_f\in\mathscr P$ and $C_f$ is a constant. Conditions are found ensuring that a sequence $\Lambda=\{\lambda_k\}\subset\Omega$ be a subsequence of zeros for various classes $H_{\mathscr P}(\Omega)$. As a rule, the results and the method are new already when $\Omega=\mathbb D$ is the unit circle and $\mathscr P$ is a system of radial majorants $p(z)=p(|z|)$.
We continue the enumeration of Part I.
Keywords: Holomorphic function, algebra of functions, weighted space, nonuniqueness sequence.
Received: 08.12.2006
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 1, Pages 131–162
DOI: https://doi.org/10.1090/S1061-0022-08-01041-8
Bibliographic databases:
Document Type: Article
MSC: 30C15
Language: Russian
Citation: B. N. Khabibullin, F. B. Khabibullin, L. Yu. Cherednikova, “Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness. II”, Algebra i Analiz, 20:1 (2008), 190–236; St. Petersburg Math. J., 20:1 (2009), 131–162
Citation in format AMSBIB
\Bibitem{KhaKhaChe08}
\by B.~N.~Khabibullin, F.~B.~Khabibullin, L.~Yu.~Cherednikova
\paper Zero subsequences for classes of holomorphic functions: stability and the entropy of arcwise connectedness.~II
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 1
\pages 190--236
\mathnet{http://mi.mathnet.ru/aa502}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2411973}
\zmath{https://zbmath.org/?q=an:1206.30075}
\elib{https://elibrary.ru/item.asp?id=10021842}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 1
\pages 131--162
\crossref{https://doi.org/10.1090/S1061-0022-08-01041-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497300007}
Linking options:
  • https://www.mathnet.ru/eng/aa502
  • https://www.mathnet.ru/eng/aa/v20/i1/p190
    Cycle of papers
    This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:555
    Full-text PDF :157
    References:92
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024