Loading [MathJax]/jax/output/SVG/config.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 1, Pages 86–92 (Mi aa498)  

This article is cited in 22 scientific papers (total in 22 papers)

Research Papers

Surface wave running along the edge of an elastic wedge

I. V. Kamotskii
References:
Keywords: Surface wave, Reyleigh wave, acute wedges, variational principle.
Received: 05.04.2007
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 1, Pages 59–63
DOI: https://doi.org/10.1090/S1061-0022-08-01037-6
Bibliographic databases:
Document Type: Article
MSC: 74J15
Language: Russian
Citation: I. V. Kamotskii, “Surface wave running along the edge of an elastic wedge”, Algebra i Analiz, 20:1 (2008), 86–92; St. Petersburg Math. J., 20:1 (2009), 59–63
Citation in format AMSBIB
\Bibitem{Kam08}
\by I.~V.~Kamotskii
\paper Surface wave running along the edge of an elastic wedge
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 1
\pages 86--92
\mathnet{http://mi.mathnet.ru/aa498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2411969}
\zmath{https://zbmath.org/?q=an:1206.35234}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 1
\pages 59--63
\crossref{https://doi.org/10.1090/S1061-0022-08-01037-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497300003}
Linking options:
  • https://www.mathnet.ru/eng/aa498
  • https://www.mathnet.ru/eng/aa/v20/i1/p86
  • This publication is cited in the following 22 articles:
    1. S. A. Nazarov, “Rayleigh Waves for Elliptic Systems in Domains with Periodic Boundaries”, Diff Equat, 58:5 (2022), 631  crossref
    2. A. O. Vatulyan, L. I. Parinova, “WAVE PROCESSES IN VISCOELASTIC TOPOGRAPHIC WAVEGUIDES”, Mech. Solids, 57:2 (2022), 244  crossref
    3. Vatulyan A.O. Parinova I L., “A Study of Wave Processes in Elastic Topographic Waveguides”, Acoust. Phys., 67:2 (2021), 101–107  crossref  isi
    4. Bakharev F.L. Nazarov I A., “Existence of the Discrete Spectrum in the Fichera Layers and Crosses of Arbitrary Dimension”, J. Funct. Anal., 281:4 (2021), 109071  crossref  mathscinet  isi
    5. Mahir HASANSOY, “Spectral Analysis Of Elastic Waveguides”, Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 13:1 (2020), 43  crossref
    6. Pupyrev P.D., Nedospasov I.A., Mayer A.P., “Guided Acoustic Waves At the Intersection of Interfaces and Surfaces”, Ultrasonics, 95 (2019), 52–62  crossref  isi
    7. Wilde V M., Golub V M., Eremin A.A., “Experimental Observation of Theoretically Predicted Spectrum of Edge Waves in a Thick Elastic Plate With Facets”, Ultrasonics, 98 (2019), 88–93  crossref  isi
    8. Khalile M. Pankrashkin K., “Eigenvalues of Robin Laplacians in Infinite Sectors”, Math. Nachr., 291:5-6 (2018), 928–965  crossref  mathscinet  zmath  isi  scopus
    9. Zavorokhin G.L., Nazarov A.I., Nazarov S.A., “The Symmetric Mode of An Elastic Solid Wedge With the Opening Close to a Flat Angle”, Dokl. Phys., 63:12 (2018), 526–529  crossref  mathscinet  isi  scopus
    10. Pupyrev P.D., Lomonosov A.M., Mayer A.P., “Laser-generated ultrasonic pulse shapes at solid wedges”, Ultrasonics, 70 (2016), 75–83  crossref  isi  elib  scopus
    11. Pupyrev P.D., Lomonosov A.M., Nikodijevic A., Mayer A.P., “On the existence of guided acoustic waves at rectangular anisotropic edges”, Ultrasonics, 71 (2016), 278–287  crossref  isi  elib  scopus
    12. Hess P., Lomonosov A.M., Mayer A.P., “Laser-Based Linear and Nonlinear Guided Elastic Waves at Surfaces (2D) and Wedges (1D)”, Ultrasonics, 54:1 (2014), 39–55  crossref  isi  elib  scopus
    13. V. M. Babich, “On excitation coefficient of a wave propagating along the edge of an elastic wedge”, J. Math. Sci. (N. Y.), 214:3 (2016), 248–251  mathnet  crossref  mathscinet
    14. Pupyrev P.D., Lomonosov A.M., Hess P., Mayer A.P., “Symmetry Effects on Elastic Wedge Waves At Anisotropic Edges”, J. Appl. Phys., 115:24 (2014), 243504  crossref  adsnasa  isi  elib  scopus
    15. Sokolova E.S., Kovalev A.S., Mayer A.P., “Second-Order Nonlinearity of Wedge Acoustic Waves in Anisotropic Media”, Wave Motion, 50:2 (2013), 246–252  crossref  mathscinet  zmath  isi  elib  scopus
    16. S. A. Nazarov, “Discrete spectrum of cranked, branchy, and periodic waveguides”, St. Petersburg Math. J., 23:2 (2012), 351–379  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    17. V. M. Babich, “A class of topographical waveguides”, St. Petersburg Math. J., 22:1 (2011), 73–79  mathnet  crossref  mathscinet  zmath  isi
    18. G. L. Zavorokhin, A. I. Nazarov, “On elastic waves in a wedge”, J. Math. Sci. (N. Y.), 175:6 (2011), 646–650  mathnet  crossref
    19. Kamotskii I. V., Kiselev A. P., “An energy approach to the proof of the existence of Rayleigh waves in an anisotropic elastic half-space”, J. Appl. Math. Mech., 73:4 (2009), 464–470  crossref  mathscinet  isi  elib  elib  scopus
    20. Cherednichenko K. D., Sabina F. J., “On the existence of waves guided by a cavity in an elastic film”, Quart. J. Mech. Appl. Math., 62:3 (2009), 221–233  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:856
    Full-text PDF :249
    References:81
    First page:14
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025