Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1994, Volume 6, Issue 6, Pages 128–153 (Mi aa485)  

Research Papers

Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity

M. Fuchsa, G. A. Sereginb

a Saarland University
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract: We consider the model problem of minimizing the functional $\int_{\Omega}\frac{1}{2}|\nabla u|^2+h(\operatorname{det}\nabla u)dx$ where $u:\mathbb R^2\supset\Omega\to\mathbb R^2$ and $h:\mathbb R\to[0,\infty]$ denotes a function which is convex and smooth on $(0,\infty)$, $\operatorname{lim}_{t\downarrow 0}h(t)=+\infty$ and $h\equiv+\infty$ on $(-\infty,0]$. In particular, we show that it is possible to introduce an approximation $\int_{\Omega}\frac{1}{2}|\nabla u|^2+h_{\delta}(\operatorname{det}\nabla u)dx$ for the energy whose minimizers $u_{\delta}$ are of class $C^1$ on some open subset $\Omega_{\delta}$ of $\Omega$ and converge strongly in $H^{1,2}(\Omega,\mathbb R^2)$ to a minimizer и of the original problem. Moreover, we have control on the measure of the exceptional set in the sense that $|\Omega-\Omega_{\delta}|\to 0$ as $\delta\to 0$.
Keywords: Nonlinear elasticity, partial regularity, approximation.
Received: 25.05.1994
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Fuchs, G. A. Seregin, “Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity”, Algebra i Analiz, 6:6 (1994), 128–153; St. Petersburg Math. J., 6:6 (1995), 1229–1248
Citation in format AMSBIB
\Bibitem{FucSer94}
\by M.~Fuchs, G.~A.~Seregin
\paper Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity
\jour Algebra i Analiz
\yr 1994
\vol 6
\issue 6
\pages 128--153
\mathnet{http://mi.mathnet.ru/aa485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1322123}
\zmath{https://zbmath.org/?q=an:0839.73009|0827.73010}
\transl
\jour St. Petersburg Math. J.
\yr 1995
\vol 6
\issue 6
\pages 1229--1248
Linking options:
  • https://www.mathnet.ru/eng/aa485
  • https://www.mathnet.ru/eng/aa/v6/i6/p128
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :151
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024