Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1994, Volume 6, Issue 1, Pages 127–131 (Mi aa427)  

This article is cited in 5 scientific papers (total in 5 papers)

Research Papers

Deviation theorems for pfaffian sigmoids

D. Yu. Grigorievab

a On leave from Mathematical Institute, St. Petersburg, RUSSIA
b Departments Computer Science and Mathematics, Penn State University, State College, PA, USA
Full-text PDF (501 kB) Citations (5)
Abstract: By a Pfaffian sigmoid of depth $d$ we mean a circuit with $d$ layers in which rational operations are admitted at each layer, and to jump to the next layer one solves an ordinary differential equation of the type $v'=p(v)$ where $p$ is a polynomial whose coefficients are functions computed at the previous layers of the sigmoid. Thus, a Pfaffian sigmoid computes Pfaffian functions (in the sense of A. Khovanskii). A deviation theorem is proved which states that for a real function $f$, $f\not\equiv 0$, computed by a Pfaffian sigmoid of depth (or parallel complexity) $d$ there exists an integer $n$ such that for a certain $x_0$ the inequalities $(\exp(\dots(\exp(|x|^n))\dots))^{-1}\leq|f(x)|\leq\exp(\dots(\exp(|x|^n))\dots)$ hold for all $|x|\geq x_0$, where the iteration of the exponential function is taken $d$ times. One can treat the deviation theorem as an analogue of the Liouville theorem (on algebraic numbers) for Pfaffian functions.
Keywords: Pfaffian sigmoid, deviation theorems, parallel complexity.
Received: 13.04.1993
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. Yu. Grigoriev, “Deviation theorems for pfaffian sigmoids”, Algebra i Analiz, 6:1 (1994), 127–131; St. Petersburg Math. J., 6:1 (1995), 107–111
Citation in format AMSBIB
\Bibitem{Gri94}
\by D.~Yu.~Grigoriev
\paper Deviation theorems for pfaffian sigmoids
\jour Algebra i Analiz
\yr 1994
\vol 6
\issue 1
\pages 127--131
\mathnet{http://mi.mathnet.ru/aa427}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1274967}
\zmath{https://zbmath.org/?q=an:0844.05090}
\transl
\jour St. Petersburg Math. J.
\yr 1995
\vol 6
\issue 1
\pages 107--111
Linking options:
  • https://www.mathnet.ru/eng/aa427
  • https://www.mathnet.ru/eng/aa/v6/i1/p127
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:245
    Full-text PDF :106
    References:1
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024