Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1991, Volume 3, Issue 6, Pages 155–163 (Mi aa295)  

Research Papers

Maximum principle for parabolic systems

M. Marino, A. Maugeri

Università di Catania, Dipartimento di Matematica
Abstract: We show, under very general assumptions on the datum $u$, that Cauchy–Dirichlet problem
$$ \begin{cases} -\sum\limits_{ij=1}^nD_i(A^0_{ij}D_j v)+\frac{\partial v}{\partial t}=0\quad\text{in}\quad Q,\\ v=u\quad\text{on the parabolic boundary $\Gamma_Q$ of $Q$} \end{cases} $$
admits a unique bounded solution.
Keywords: parabolic systems, maximum principle.
Received: 20.05.1991
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Marino, A. Maugeri, “Maximum principle for parabolic systems”, Algebra i Analiz, 3:6 (1991), 155–163; St. Petersburg Math. J., 3:6 (1992), 1351–1358
Citation in format AMSBIB
\Bibitem{MarMau91}
\by M.~Marino, A.~Maugeri
\paper Maximum principle for parabolic systems
\jour Algebra i Analiz
\yr 1991
\vol 3
\issue 6
\pages 155--163
\mathnet{http://mi.mathnet.ru/aa295}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1167681}
\zmath{https://zbmath.org/?q=an:0791.35056|0778.35049}
\transl
\jour St. Petersburg Math. J.
\yr 1992
\vol 3
\issue 6
\pages 1351--1358
Linking options:
  • https://www.mathnet.ru/eng/aa295
  • https://www.mathnet.ru/eng/aa/v3/i6/p155
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024