Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1990, Volume 2, Issue 5, Pages 101–120 (Mi aa208)  

This article is cited in 8 scientific papers (total in 8 papers)

Research Papers

Algebra of functions on the quantum group SU(n+1) and odd-dimensional quantum spheres

L. L. Vaksman, Ya. S. Soibel'man

Rostov State University
Full-text PDF (994 kB) Citations (8)
Received: 30.07.1989
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. L. Vaksman, Ya. S. Soibel'man, “Algebra of functions on the quantum group SU(n+1) and odd-dimensional quantum spheres”, Algebra i Analiz, 2:5 (1990), 101–120; Leningrad Math. J., 2:5 (1991), 1023–1042
Citation in format AMSBIB
\Bibitem{VakSoi90}
\by L.~L.~Vaksman, Ya.~S.~Soibel'man
\paper Algebra of functions on the quantum group $\mathrm{SU}(n+1)$ and odd-dimensional quantum spheres
\jour Algebra i Analiz
\yr 1990
\vol 2
\issue 5
\pages 101--120
\mathnet{http://mi.mathnet.ru/aa208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1086447}
\zmath{https://zbmath.org/?q=an:0751.46048}
\transl
\jour Leningrad Math. J.
\yr 1991
\vol 2
\issue 5
\pages 1023--1042
Linking options:
  • https://www.mathnet.ru/eng/aa208
  • https://www.mathnet.ru/eng/aa/v2/i5/p101
  • This publication is cited in the following 8 articles:
    1. Albert Jeu-Liang Sheu, “The Structure of Line Bundles over Quantum Teardrops”, SIGMA, 10 (2014), 027, 11 pp.  mathnet  crossref  mathscinet
    2. Sundar S., “Inverse Semigroups and Sheu's Groupoid for Odd Dimensional Quantum Spheres”, Can. Math. Bul.-Bul. Can. Math., 56:3 (2013), 630–639  crossref  isi
    3. O. Bershtein, S. Sinel'shchikov, “A $q$-analog of the Hua equations”, Zhurn. matem. fiz., anal., geom., 5:3 (2009), 219–244  mathnet  mathscinet  zmath
    4. Wang, SZ, “Classification of quantum groups SUq(n)”, Journal of the London Mathematical Society-Second Series, 59 (1999), 669  mathscinet  zmath  isi
    5. Wang, SZ, “Deformations of compact quantum groups via Rieffel's quantization”, Communications in Mathematical Physics, 178:3 (1996), 747  crossref  mathscinet  zmath  adsnasa  isi
    6. L. I. Vainerman, Yu. A. Chapovsky, “A Gelfand Pair of Compact Quantum Groups”, Funct. Anal. Appl., 29:2 (1995), 126–129  mathnet  crossref  mathscinet  zmath  isi
    7. Theoret. and Math. Phys., 104:1 (1995), 762–776  mathnet  crossref  mathscinet  zmath  isi
    8. L. L. Vaksman, “Integral intertwining operators and quantum homogeneous spaces”, Theoret. and Math. Phys., 105:3 (1995), 1476–1483  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ
    Statistics & downloads:
    Abstract page:740
    Full-text PDF :406
    References:2
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025