Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2024, Volume 36, Issue 6, Pages 129–162 (Mi aa1950)  

Research Papers

Representations of short $SL_2$-structures

R. O. Stasenkoab

a National Research University Higher School of Economics
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: The well-known Tits-Kantor-Koeher construction makes it possible to contruct a Lie algebra of a special kind from a Jordan algebra. In 2005, I. Kantor and G. Shpiz proposed a way to connect the representation theory of Jordan algebras with the representation theory of Lie algebras. In this article, we use an alternative way to confirm this connection. Namely, we use an analogue of so-called $S$ structures on Lie modules for $S= SL_2$. The aim of our work is to prove a one-to-one correspondence between representations of Lie algebras with $SL_2$-structure and special representations of Jordan algebras.
Keywords: Jordan algebras, Lie modules, special Jordan modules.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-15-2022-284
Received: 19.07.2024
Document Type: Article
Language: Russian
Citation: R. O. Stasenko, “Representations of short $SL_2$-structures”, Algebra i Analiz, 36:6 (2024), 129–162
Citation in format AMSBIB
\Bibitem{Sta24}
\by R.~O.~Stasenko
\paper Representations of short $SL_2$-structures
\jour Algebra i Analiz
\yr 2024
\vol 36
\issue 6
\pages 129--162
\mathnet{http://mi.mathnet.ru/aa1950}
Linking options:
  • https://www.mathnet.ru/eng/aa1950
  • https://www.mathnet.ru/eng/aa/v36/i6/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:58
    Full-text PDF :4
    References:8
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024