Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2024, Volume 36, Issue 5, Pages 163–172 (Mi aa1942)  

Research Papers

Polynomial approximation in the mean on segments

N. A. Shirokov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: Let $S_k$, $1\le k\le m$ – pairs of disjoint segments, $S_k = [a_k, b_k]$, $1<p_k<\infty$ functions $f_k$ are defined on $S_k$, $f_k$ belongs to $C(S_k)$ and $f'_k$ belongs to $L^{P_k}(S_k)$. The work proves that for $n=1,2,\dots$ there are polynomials $P_n$, $ \deg P_n \le n$ that approximate all functions $f_k$ in the metric $L^{P_k}$ with weights tending to infinity when approaching points $a_k$, $b_k$.
Keywords: polynomials, approximation in the mean, $L^p$ spaces.
Funding agency Grant number
Russian Science Foundation 23-11-00171
Received: 22.04.2024
Document Type: Article
Language: Russian
Citation: N. A. Shirokov, “Polynomial approximation in the mean on segments”, Algebra i Analiz, 36:5 (2024), 163–172
Citation in format AMSBIB
\Bibitem{Shi24}
\by N.~A.~Shirokov
\paper Polynomial approximation in the mean on segments
\jour Algebra i Analiz
\yr 2024
\vol 36
\issue 5
\pages 163--172
\mathnet{http://mi.mathnet.ru/aa1942}
Linking options:
  • https://www.mathnet.ru/eng/aa1942
  • https://www.mathnet.ru/eng/aa/v36/i5/p163
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025