Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2024, Volume 36, Issue 5, Pages 42–69 (Mi aa1933)  

Research Papers

On certain invariants of commutative Artinian algebras

A. G. Aleksandrov

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
References:
Abstract: The paper studies the relationships between the basic algebraic, topological and analytical invariants of Artinian algebras. Thus, among other things, we show that the length of the modules of derivations and Kahler differentials of every local Gorenstein algebra does not exceed the length of the Artinian algebra itself minus one. The proof is based on the theory of duality in the cotangent complex of analytic algebras, on the properties of faithful modules over an Artinian ring, and on a description of the structure of the annihilator and socle of modules of derivations and Kahler differentials of an Artinian algebra. In particular, it follows that the Tjurina number of every zero-dimensional Gorenstein singularity is not less than its Milnor number, i.e. the inequality $\tau \geqslant \mu$ holds.
Keywords: Gorenstein Artinian algebras, cotangent complex, duality, Kähler differentials, derivations, socle, annihilator, faithful modules.
Received: 14.01.2024
Document Type: Article
Language: Russian
Citation: A. G. Aleksandrov, “On certain invariants of commutative Artinian algebras”, Algebra i Analiz, 36:5 (2024), 42–69
Citation in format AMSBIB
\Bibitem{Ale24}
\by A.~G.~Aleksandrov
\paper On certain invariants of commutative Artinian algebras
\jour Algebra i Analiz
\yr 2024
\vol 36
\issue 5
\pages 42--69
\mathnet{http://mi.mathnet.ru/aa1933}
Linking options:
  • https://www.mathnet.ru/eng/aa1933
  • https://www.mathnet.ru/eng/aa/v36/i5/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025