Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 1990, Volume 2, Issue 3, Pages 171–191 (Mi aa191)  

This article is cited in 9 scientific papers (total in 9 papers)

Research Papers

An analogue of the Jones polynomial for links in RP3 and a generalization of the Kauffman–Murasugi theorem

Yu. V. Drobotukhina

Leningrad Department of V. A. Steklov Institute of Mathematics, USSR Academy of Sciences
Received: 12.04.1989
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. V. Drobotukhina, “An analogue of the Jones polynomial for links in RP3 and a generalization of the Kauffman–Murasugi theorem”, Algebra i Analiz, 2:3 (1990), 171–191; Leningrad Math. J., 2:3 (1991), 613–630
Citation in format AMSBIB
\Bibitem{Dro90}
\by Yu.~V.~Drobotukhina
\paper An analogue of the Jones polynomial for links in $\mathbb{R}P^3$ and a~generalization of the Kauffman--Murasugi theorem
\jour Algebra i Analiz
\yr 1990
\vol 2
\issue 3
\pages 171--191
\mathnet{http://mi.mathnet.ru/aa191}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1073213}
\zmath{https://zbmath.org/?q=an:0713.57005|0724.57003}
\transl
\jour Leningrad Math. J.
\yr 1991
\vol 2
\issue 3
\pages 613--630
Linking options:
  • https://www.mathnet.ru/eng/aa191
  • https://www.mathnet.ru/eng/aa/v2/i3/p171
  • This publication is cited in the following 9 articles:
    1. A. A. Akimova, S. V. Matveev, V. V. Tarkaev, “Classification of links of small complexity in a thickened torus”, Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 12–24  mathnet  crossref  crossref  isi  elib
    2. A. A. Akimova, “Klassifikatsiya uzlov v utolschennom tore, minimalnye oktaedralnye diagrammy kotorykh ne lezhat v koltse”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 7:1 (2015), 5–10  mathnet  elib
    3. D. V. Gorkovets, “Biquandle invariants for links in the projective space”, Russian Math. (Iz. VUZ), 59:6 (2015), 5–9  mathnet  crossref
    4. M. Mulazzani, E. Manfredi, “On knots and links in lens spaces”, Vestnik ChelGU, 2015, no. 17, 118–134  mathnet
    5. A. A. Akimova, “Klassifikatsiya uzlov v utolschennom tore, minimalnye diagrammy kotorykh ne lezhat v koltse i imeyut pyat perekrestkov”, Vestn. Yuzhno-Ur. un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 8–11  mathnet
    6. A. A. Akimova, S. V. Matveev, “Classification of Low Complexity Knots in the Thickened Torus”, J. Math. Sci., 202:1 (2014), 1–12  mathnet  crossref
    7. D. P. Ilyutko, V. O. Manturov, I. M. Nikonov, “Parity in knot theory and graph-links”, Journal of Mathematical Sciences, 193:6 (2013), 809–965  mathnet  crossref  mathscinet
    8. D. V. Gorkovets, “Distributivnye gruppoidy dlya uzlov v proektivnom prostranstve”, Vestnik ChelGU, 2008, no. 10, 89–93  mathnet
    9. V. O. Manturov, “Khovanov homology for virtual knots with arbitrary coefficients”, Izv. Math., 71:5 (2007), 967–999  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ
    Statistics & downloads:
    Abstract page:451
    Full-text PDF :216
    References:2
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025